Abacavir/Lamivudine versus Tenofovir/Emtricitabine with Atazanavir/Ritonavir for Treatment-naive Japanese Patients with HIV-1 Infection: A Randomized Multicenter Trial

Takeshi Nishijima¹,², Misao Takano¹, Michiyo Ishisaka¹, Hirokazu Komatsu¹, Hiroyuki Gatanaga¹,², Yoshimi Kikuchi¹, Tomoyuki Endo⁴, Masahide Horiba³, Satoru Kaneda⁶, Hideki Uchiumi⁷, Tomohiko Koibuchi⁸, Toshio Naito⁹, Masaki Yoshida¹⁰, Natsuo Tachikawa¹¹, Mikio Ueda¹², Yoshiyuki Yokomaku¹¹, Teruhisa Fujii¹⁴, Satoshi Higasa¹⁵, Kiyonori Takada¹⁶, Masahiro Yamamoto¹⁷, Shuzo Matsushita², Masao Tateyama¹⁸, Yoshihari Tanabe¹⁹, Hiroaki Mitsuya²⁰,²¹, Shinichi Oka¹,² on behalf of the Epzicom-Truvada study team

Abstract

Objective To compare the efficacy and safety of fixed-dose abacavir/lamivudine (ABC/3TC) and tenofovir/emtricitabine (TDF/FTC) with ritonavir-boosted atazanavir (ATV/r) in treatment-naive Japanese patients with HIV-1 infection.

Methods A 96-week multicenter, randomized, open-label, parallel group pilot study was conducted. The endpoints were times to virologic failure, safety event and regimen modification.

Results 109 patients were enrolled and randomly allocated (54 patients received ABC/3TC and 55 patients received TDF/FTC). All randomized subjects were analyzed. The time to virologic failure was not significantly different between the two arms by 96 weeks (HR, 2.09; 95% CI, 0.72-6.13; p=0.178). Both regimens showed favorable viral efficacy, as in the intention-to-treat population, 72.2% (ABC/3TC) and 78.2% (TDF/FTC) of the patients had an HIV-1 viral load <50 copies/mL at 96 weeks. The time to the first grade 3 or 4 adverse event and the time to the first regimen modification were not significantly different between the two arms (adverse event: HR 0.66; 95% CI, 0.25-1.75, p=0.407) (regimen modification: HR 1.03; 95% CI, 0.33-3.19, p=0.964). Both regimens were also well-tolerated, as only 11.1% (ABC/3TC) and 10.9% (TDF/FTC) of the patients discontinued the allocated regimen by 96 weeks. Clinically suspected abacavir-associated hypersensitivity reactions occurred in only one (1.9%) patient in the ABC/3TC arm.

Conclusion Although insufficiently powered to show non-inferiority of viral efficacy of ABC/3TC relative to TDF/FTC, this pilot trial suggested that ABC/3TC with ATV/r is a safe and efficacious initial regimen for HLA-B*5701-negative patients, such as the Japanese population.
Key words: HIV-1 infection, tenofovir/emtricitabine, abacavir/lamivudine, ritonavir-boosted atazanavir, treatment-naïve Asian patients, HLA-B*5701-negative

Introduction

The fixed-dose combinations of tenofovir disoproxil fumarate 300 mg/emtricitabine 200 mg and abacavir sulfate 600 mg/lamivudine 300 mg are components of antiretroviral therapy for treatment-naïve patients with HIV-1 infection in developed countries (1, 2). The efficacy and safety of tenofovir/emtricitabine (TDF/FTC) and abacavir/lamivudine (ABC/3TC) remain the focus of ongoing debate. The ACTG 5202 trial demonstrated that the viral efficacy of ABC/3TC is inferior to that of TDF/FTC among treatment-naïve patients with a baseline HIV viral load of >100,000 copies/mL receiving efavirenz or ritonavir-boosted atazanavir as a key drug (3). On the other hand, the HEAT study showed that the viral efficacy of ABC/3TC is not inferior to that of TDF/FTC, regardless of the baseline viral load when used in combination with lopinavir/ritonavir (4).

With regard to safety, the occurrence of ABC-associated serious hypersensitivity reactions, the most important adverse effect of ABC affecting 5-8% of patients, has limited its use (5). However, screening for HLA-B*5701 or prescribing ABC in HLA-B*5701-negative populations, such as the Japanese, can reduce the incidence of immunologically-confirmed hypersensitivity to 0% (6, 7). Another negative aspect of ABC use is its association with myocardial infarction, as reported by the D:A:D study (8). However, the possible association of myocardial infarction with ABC was not confirmed by a recent meta-analysis report of the US Food and Drug Administration (9). On the other hand, renal proximal tubular damage leading to renal dysfunction and a loss of phosphate, which can result in decreased bone mineral density, is a well-known adverse effect of TDF (10-14).

Taking this background into account, the American Department of Health and Human Services (DHHS) Guidelines place TDF/FTC as the preferred drug and ABC/3TC as an alternative choice, whereas other international guidelines, including the European AIDS Clinical Society (EACS) Guidelines and the Japanese Guidelines, recommend both TDF/FTC and ABC/3TC as preferred choices (1, 2, 15).

Randomized controlled trials comparing TDF/FTC and ABC/3TC have been conducted in the US and Europe, but not in other parts of the world (4, 16, 17). The efficacy and safety of these two fixed-dose regimens in patients with different genetic backgrounds and body statures might not be similar to the results of previous trials, especially considering that the prevalence of HLA-B*5701 is zero in the Japanese population (7). Moreover, the degree of decrement in the renal function with TDF is larger in patients with a low body weight, such as the Japanese, which might limit the use of TDF in patients with a high risk for renal dysfunction (18-20).

Based on the above described background, the present randomized trial was originally designed in 2007 to elucidate whether the viral efficacy of ABC/3TC is not inferior to that of TDF/FTC with ritonavir-(100 mg) boosted atazanavir (300 mg) in treatment-naïve Japanese patients, whose body weight is much lower than Whites or Blacks (21). However, the independent data and safety monitoring board (DSMB) recommended that the protocol be modified to examine the efficacy, safety and tolerability among Japanese patients with HIV-1 infection for 96 weeks as a pilot trial because only 109 patients were enrolled and randomized at the end of the enrollment period despite a planned sample size of 240 patients, primarily due to the above mentioned negative reports of ABC use in the D:A:D study and ACTG 5202 (3, 8).

Materials and Methods

This clinical trial was designed and reported according to the recommendations of the Consolidated Standard of Reporting Trials (CONSORT) statement (22). The protocol and supporting CONSORT checklist are available as supplementary files (see Supplementary files 1 and 2).

Ethics statement

The Research Ethics Committee of each participating center approved the study protocol. All patients enrolled in this study provided a written informed consent. This study was conducted according to the principles expressed in the Declaration of Helsinki.

Study design

The Epzicom-Truvada study is a phase 4, multicenter, randomized, open-label, parallel group pilot study conducted in Japan that compared the efficacy and safety of a fixed dose of ABC/3TC and TDF/FTC, both combined with ritonavir-boosted atazanavir (ATV/r) for the initial treatment of HIV-1 infection for 96 weeks. Enrollment of patients began in November 2007 and ended in March 2010, and the follow-up period ended in February 2012. With a one to one ratio, the patients were randomly assigned to receive either a fixed dose of ABC/3TC or TDF/FTC, both administered with ATV/r. The randomization was stratified according to each participating site and conducted at the data center with
independent clinical research coordinators using a computer-generated randomization list prepared by a statistician with no clinical involvement in the trial.

Study patients

This study population included treatment-naive Japanese patients aged 20 or over with HIV-1 infection who met the eligibility criteria for the commencement of antiretroviral therapy according to the DHHS Guidelines in place in the U.S. at the time of the writing of the study protocol (a CD4 count <350/μL or a history of AIDS-defining illness regardless of the CD4 count) (23). Patients were screened and excluded if they had previously taken lamivudine, tested positive for hepatitis B surface antigens, had comorbidities such as hemophilia or diabetes mellitus that required medical treatment, congestive heart failure or cardiac myopathy or if they were considered not suitable for enrollment by the attending physicians. Candidates were also excluded if their alanine aminotransferase level was 2.5 times greater than the upper limit of normal, they had an estimated glomerular filtration rate (eGFR) calculated using the Cockcroft-Gault equation of <60 mL/min, [creatinine clearance = [(140- age) × weight (kg)]/(serum creatinine ×72)(×0.85 for females)] or a serum phosphate level <2 mg/dL or had active opportunistic diseases that required treatment (24). Each patient’s actual body weight was used for the calculation of eGFR. At screening, a genotypic drug resistant test and screening for the HLA-B*5701 allele were permitted but not required because the prevalence of both the drug resistant virus and the HLA-B*5701 allele are low in Japanese patients (7, 25). Medical history, including a history of AIDS-defining illnesses and other comorbidities, was also collected. Enrollment stopped on March 3, 2008 due to the recommendation from the DSMB of the trial based on the interim analysis of the ACTG5202 that ABC/3TC is less effective than TDF/FTC in patients with a baseline viral load >100,000 copies/mL (3). Accordingly, the DSMB recommended that the trial should be restarted with modified inclusion criteria: to enroll patients with an HIV-1 viral load of <100,000 copies/mL at screening, and the enrollment restarted from April 1, 2008.

Study procedures

Required visits for participants for clinical and laboratory assessments were at screening, enrollment and every 4 weeks until the viral load diminished to <50 copies/mL. For patients with a viral load <50 copies/mL, the required visit interval was every 12 weeks for the duration of the study. The evaluation performed at each visit included a physical examination, CD4 cell count, HIV-1 RNA viral load, a complete blood cell count and blood chemistries (total bilirubin, alanine aminotransferase, lactate dehydrogenase, serum creatinine, potassium, phosphate, triglycerides and low-density lipoprotein (LDL) cholesterol) and a urine examination of the levels of phosphate, creatinine and β2 microglobulin. The values of urinary β2 microglobulin were expressed relative to a urinary creatinine level of 1 g/L (/g Cr). The percent tubular resorption of phosphate was calculated using the following formula: \(1 - \left\{ \frac{(\text{urine phosphate} \times \text{serum creatinine})}{(\text{urine creatinine} \times \text{serum phosphate})} \right\} \times 100 \) (26).

All data, including the HIV-1 RNA viral load, were collected at each participating site and sent to the data center. Grade 3 or 4 serious adverse events were reported to the DSMB, which made a judgment whether they were caused by the study drugs. Independent research coordinators at the data center visited at least 10 facilities every year to monitor the accuracy of the submitted data and compliance to the study protocol. All authors vouch for the completeness and accuracy of the reported data.

Statistical analysis

The sample size calculation was originally conducted as follows: Assuming a 90% success rate in the TDF/FTC arm at week 48, a sample size of 224 patients (112 patients per arm) provided 80% power (one sided, \(\alpha=0.05\)) to establish non-inferiority of ABC/3TC to TDF/FTC each in combination with ATV/r. Non-inferiority was defined as the lower bound of the two-sided 95% confidence interval (CI) with the treatment difference being above -10%. Based on this assumption, the targeted sample size was set to 240 patients (120 in each arm). However, as previously described, due to the shortage of accrued subjects, this study was underpowered and conducted as a pilot trial.

The primary efficacy endpoint was the time from randomization to virologic failure (defined as a confirmed HIV-1 RNA >1,000 copies/mL at or after 16 weeks and before 24 weeks or >200 copies/mL at or after 24 weeks) (3). The secondary efficacy endpoints included the time from randomization to either virologic failure or ART modification and a comparison of the proportions of patients with HIV-1 RNA <50 copies/mL at weeks 48 and 96 regardless of previous virologic failure. The intent-to-treat (ITT) population comprising all randomized subjects was used to assess the efficacy data; however, a comparison of the proportion of virologically-suppressed patients was conducted with both the ITT and a per protocol population while on the initial randomized regimen.

The safety endpoint was the time from randomization to the first occurrence of grade 3 or 4 laboratory data or abnormal symptoms that were at least one grade higher than the baseline. Isolated hyperbilirubinemia was excluded from the safety endpoints. The grade of adverse events was classified according to the Division of AIDS Table for grading the severity of adult and pediatric events, version 2004 (27). The tolerability endpoint was the time from randomization to any regimen modification. The safety and tolerability endpoints were calculated in the ITT population. Changes per protocol in the CD4 cell count, lipid markers and renal tubular markers at weeks 48 and 96 were compared using the Mann-Whitney test. A repeated measures mixed model was used to estimate and compare changes in the renal function between the two arms (17). The renal function was calculated using the Modification of Diet in Renal Disease study.
Table 1. Demographic and Baseline Characteristics

<table>
<thead>
<tr>
<th></th>
<th>ABC/3TC (n=54)</th>
<th>TDF/FTC (n=55)</th>
<th>Total (n=109)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (male), n (%)</td>
<td>53 (98.1)</td>
<td>54 (98.2)</td>
<td>107 (98.2)</td>
</tr>
<tr>
<td>Age (years)†</td>
<td>39 (28.8-44)</td>
<td>35 (29-42)</td>
<td>36 (29-42.5)</td>
</tr>
<tr>
<td>CD4 count (/μL)†</td>
<td>236.5 (194-301.3)</td>
<td>269 (177-306)</td>
<td>257 (194-305)</td>
</tr>
<tr>
<td>HIV RNA viral load (log_{10}/mL)†</td>
<td>4.29 (3.92-4.67)</td>
<td>4.28 (3.86-4.60)</td>
<td>4.28 (3.89-4.67)</td>
</tr>
<tr>
<td>HIV RNA viral load >100,000 log_{10}/mL, n (%)</td>
<td>1 (1.9)</td>
<td>0 (0)</td>
<td>1 (0.9%)</td>
</tr>
<tr>
<td>Route of transmission (homosexual contact), n (%)</td>
<td>47 (87)</td>
<td>49 (89.1)</td>
<td>96 (88.1)</td>
</tr>
<tr>
<td>History of AIDS n (%)</td>
<td>1 (1.9)</td>
<td>5 (9.1)</td>
<td>6 (5.5)</td>
</tr>
<tr>
<td>Body weight (kg)†</td>
<td>64 (59-72.1)</td>
<td>63.1 (58-69)</td>
<td>64 (58.3-70.7)</td>
</tr>
<tr>
<td>Body mass index (kg/m^2)†</td>
<td>22.6 (20.4-24.2)</td>
<td>21.9 (20.3-23.6)</td>
<td>22.4 (20.3-23.7)</td>
</tr>
<tr>
<td>eGFR (mL/min/1.73 m^2)†</td>
<td>96.9 (82.7-107.3)</td>
<td>94.4 (83.6-105.7)</td>
<td>96.7 (83.0-106.7)</td>
</tr>
<tr>
<td>Creatinine clearance (mL/min)†</td>
<td>119.3 (105.4-136.6)</td>
<td>124.6 (103-139.3)</td>
<td>120.3 (104.7-138.3)</td>
</tr>
<tr>
<td>Serum creatinine (mg/dL)†</td>
<td>0.76 (0.67-0.83)</td>
<td>0.75 (0.68-0.84)</td>
<td>0.76 (0.68-0.83)</td>
</tr>
<tr>
<td>Urinary β2-microglobulin (μg/g Cre)†</td>
<td>195.8 (98.3-505.3)</td>
<td>138.4 (86.8-426.4)</td>
<td>172.9 (88.3-458.7)</td>
</tr>
<tr>
<td>Tubular resorption of phosphate (%)†</td>
<td>92.9 (90-95.1)</td>
<td>92.3 (87.7-95.2)</td>
<td>92.7 (89.3-95.1)</td>
</tr>
<tr>
<td>LDL-cholesterol (mg/dL)†</td>
<td>91.5 (75-125.5)</td>
<td>94 (72.5-111.5)</td>
<td>94 (74.5-114)</td>
</tr>
<tr>
<td>Triglycerides (mg/dL)†</td>
<td>132 (98-170.5)</td>
<td>114 (73-184)</td>
<td>127 (85.5-175)</td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
<td>3 (5.6)</td>
<td>1 (1.8)</td>
<td>4 (3.7)</td>
</tr>
<tr>
<td>Diabetes mellitus, n (%)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Concurrent use of nephrotoxic drugs, n (%)</td>
<td>10 (18.5)</td>
<td>10 (18.2)</td>
<td>20 (18.3)</td>
</tr>
<tr>
<td>Hepatitis C, n (%)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

†median (interquartile range)

IQR: interquartile range, AIDS: acquired immunodeficiency syndrome, eGFR: estimated glomerular filtration rate, LDL: low-density lipoprotein

equation adjusted for the Japanese population (28), and a sensitivity analysis was conducted using the above mentioned Cockcroft-Gault equation.

Time-to-event distributions were estimated using the Kaplan-Meier method and compared using the two-sided log-rank test. Hazard ratios (HRs) and 95% confidence intervals (95% CIs) were estimated using the Cox proportional hazards model. For grade 3 or 4 serious adverse events caused by the study drugs, the description and severities were recorded. Statistical significance was defined at two-sided p values <0.05. All statistical analyses were performed with The Statistical Package for Social Sciences ver. 17.0 (SPSS, Chicago, IL).

Results

Patient disposition and baseline characteristics

109 patients from 18 centers were enrolled and randomized between November 2007 and March 2010. Of these patients, 54 and 55 were allocated to the ABC/3TC and TDF/FTC arms, respectively (Fig. 1). The baseline demographics and characteristics are shown in Table 1. Most patients were men, with a median body weight of 64 kg. The median CD4 cell count was 257/μL (IQR: 194-305). One patient in the ABC/3TC arm had a baseline HIV-1 RNA level of >100,000
copies/mL. This patient was enrolled before the announcement of the interim analysis of ACTG5202 in March 2008 and achieved an HIV-1 RNA level of <50 copies/mL by the end of that month. One patient in the TDF/FTC arm had a history of lamivudine use. That patient was included in the analysis because this aspect of the medical history was identified after randomization and initiation of the allocated treatment.

Efficacy results

In the primary efficacy analysis, the time to virologic failure was not significantly different in the ABC/3TC arm from that observed in the TDF/FTC arm by 96 weeks (HR, 2.09; 95% CI, 0.72-6.13; p=0.178). Virologic failure occurred in 5 and 10 patients in the ABC/3TC and TDF/FTC arms, respectively (Fig. 2A). In the secondary efficacy analysis, the times to the first occurrence of confirmed virologic failure or discontinuation of the initially allocated regimen were not different between the two arms (HR, 1.30; 95% CI, 0.61-2.77; p=0.502) (Fig. 2B). Among the ITT population, the proportion of patients with an HIV RNA level <50 copies/mL at week 48 regardless of previous virologic failure was 81.5% in the ABC/3TC group and 80% in the TDF/FTC group, for a difference of -1.5% (95% CI, -16% to 13%), and at week 96, 72.2% and 78.2% for the ABC/3TC and TDF/FTC groups, respectively, for a difference of 6% (95% CI, -10% to 22%) (Fig. 3A). The per protocol analysis showed that the proportions at week 48 were 91.7% and 86.3% for the ABC/3TC and TDF/FTC groups, respectively, for a difference of -5.4% (95% CI, -18% to 7%). At week 96, the proportions were 88.6% and 95.6% for the ABC/3TC and TDF/FTC groups, respectively, for a
Safety and tolerability results

10 (18.5%) and 7 (12.7%) patients in the ABC/3TC and TDF/FTC groups, respectively, experienced 23 grade 3 or 4 adverse events related to the study drugs while on the initial regimen. The time to the first adverse event was not significantly different between the two arms (HR 0.66; 95% CI, 0.25-1.75, p=0.407) (Fig. 4A). Table 2 shows a list of selected grade 3 or 4 safety events. Among the adverse events, 48% included elevation of lipid markers. The tolerability endpoint, the time to first ART modification, was not significantly different between the two arms (HR 1.03; 95% CI, 0.33-3.19, p=0.964), and only 6 (11.1%) and 6 (10.9%) patients in the ABC/3TC and TDF/FTC arms, respectively, discontinued the initially allocated regimen by 96 weeks (Fig. 4B). The most common reason for regimen modification was drug toxicity (n=10; 4 in ABC/3TC and 6 in TDF/FTC arm; suspected ABC hypersensitivity reactions based on the appearance of rash and fever in HLA-B*5701-negative patient; n=1, depression; n=3, jaundice; n=3, nausea; n=2, and lipodystrophy; n=1). One patient in the ABC/3TC group developed a cerebral infarction during week 39 but was able to continue the study drugs. No deaths were registered during the study period.

Changes in the CD4 cell count and other parameters of interest

The increase in the median CD4 count from baseline to 48 weeks was marginally larger in the ABC/3TC arm than in the TDF/FTC arm (median: ABC/3TC: 216, TDF/FTC: 192, p=0.107). This difference was significantly larger at 96 weeks (median: ABC/3TC: 242, TDF/FTC: 202, p=0.047) (Fig. 5A). The median changes in the other endpoints (hemoglobin, CD8 count, absolute lymphocytes count, and general health status) from baseline to 48 weeks were numerically larger in the ABC/3TC arm, with the differences reaching statistical significance for the hemoglobin change (median: ABC/3TC: 2.8, TDF/FTC: 1.8, p=0.027) (Fig. 5B). The median changes from baseline to 96 weeks also showed a trend toward improvement in the ABC/3TC arm (medians: CD4: 216, TDF/FTC: 192, p=0.107; hemoglobin: 2.8, TDF/FTC: 1.8, p=0.047; CD8 count: 558, TDF/FTC: 522, p=0.076; absolute lymphocytes count: 0.8, TDF/FTC: 0.7, p=0.062; general health status: 2, TDF/FTC: 1.8, p=0.062) (Fig. 5C).
Table 3. Median Values of Changes in Parameters of Interest from Baseline to 96 Weeks

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ABC/3TC (n=54)</th>
<th>TDF/FTC (n=55)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number tested</td>
<td>Baseline</td>
</tr>
<tr>
<td>CD4 cell count (μL)</td>
<td>54, 43</td>
<td>236.5</td>
</tr>
<tr>
<td>Lipids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDL-cholesterol (mg/dL)</td>
<td>54, 16</td>
<td>91.5</td>
</tr>
<tr>
<td>Triglyceride (mg/dL)</td>
<td>54, 29</td>
<td>132</td>
</tr>
<tr>
<td>Renal tubular markers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urinary β2 microglobulin (μg/g Cre)</td>
<td>49, 32</td>
<td>195.8</td>
</tr>
<tr>
<td>Tubular resorption of phosphate (%)</td>
<td>49, 32</td>
<td>93</td>
</tr>
</tbody>
</table>

LDL: low-density lipoprotein

weeks (ABC/3TC: 328, TDF/FTC: 236, p=0.031, Table 3). The increases in both LDL-cholesterol and triglycerides from baseline to 96 weeks were more significant in the ABC/3TC arm than in the TDF/FTC arm. One patient in the TDF/FTC arm had been treated with lipid-lowering medications prior to study enrollment. Furthermore, 7 patients and 1 patient in the ABC/3TC and TDF/FTC arms, respectively, started lipid-lowering agents during the study period. With regard to renal tubular markers, the levels of urinary β2 microglobulin increased in the TDF/FTC arm (median: 86.6 μg/g Cre), whereas it decreased in the ABC/3TC arm (median: -94.9 μg/g Cre). These changes were significantly different between the two arms (p<0.001). On the other hand, tubular resorption of phosphate did not show changes from baseline to 96 weeks in the two groups, and the levels were not different between the two arms (Table 3).

Changes in the renal function

A data analysis using repeated measures mixed models showed a significant decrease in the mean eGFR from baseline to 96 weeks in both groups (ABC/3TC: -8.7 mL/min/1.73 m², 95%CI -13.3 to -4.2, p=0.001; TDF/FTC: -9.2 mL/min/1.73 m², 95%CI -13.7 to -4.7, p<0.001) (Fig. 5A). There was no significant interaction between the trend of the two arms over time (p=0.202), thus indicating that the change in eGFR from baseline to 96 weeks was not significantly different between the two arms. A sensitivity analysis of creatinine clearance calculated using the Cockcroft-Gault equation showed that creatinine clearance decreased significantly from the baseline in the TDF/FTC arm (-9.6 mL/min, 95%CI -16.6 to -2.5, p=0.001) but not in the ABC/3TC arm (-4.1 mL/min, 95%CI -11.2 to 3.0, p=0.466) (Fig. 5B). No significant interaction between the trend of the two arms was observed with respect to creatinine clearance (p=0.403). Two patients in the ABC/3TC arm progressed to more advanced chronic kidney disease (CKD) stage by the last protocol visit: one patient progressed to stage 4 CKD (eGFR <30 mL/min/1.73 m²) and the other to stage 3 CKD (eGFR <60 mL/min/1.73 m²). However, ABC/3TC did not appear to be the causative drug for renal dysfunction in these two cases because the deterioration in the renal function was associated with the development of malignant lymphoma in the former patient and with the commencement of fenofibrate treatment in the latter; renal function recovered rapidly in the latter patient after the discontinuation of fenofibrate.

Discussion

Although insufficiently powered to show the non-inferiority of the viral efficacy of ABC/3TC relative to TDF/
FTC, this pilot study is the first randomized study conducted in Asia to elucidate the efficacy and safety of fixed doses of these two regimens each administered in combination with ATV/r for initial HIV-1 therapy. Viral efficacy, safety, and tolerability were not significantly different in the two arms of Japanese patients with a baseline HIV viral load <100,000 copies/mL over 96 weeks. Both regimens showed favorable viral efficacy, as in the ITT population, 72.2% and 78.2% of the patients in the ABC/3TC and TDF/FTC arms, respectively, had HIV-1 viral loads of <50 copies/mL at 96 weeks. Both regimens were also well-tolerated, as only 11.1% and 10.9% of the patients in the ABC/3TC and TDF/FTC arms, respectively, discontinued the allocated regimen by 96 weeks. Clinically suspected (not immunologically-confirmed) ABC-associated hypersensitivity reaction occurred in only one (1.9%) patient in the ABC/3TC arm, confirming that ABC hypersensitivity is rare in populations in which HLA-B*5701-positive patients are uncommon. Thus, this trial suggests that ABC/3TC may be an efficacious and safe regimen for use in HLA-B*5701-negative populations, such as the Japanese, with a baseline HIV viral load <100,000 copies/mL.

The usefulness of ABC/3TC has recently received higher recognition for two reasons. One, a meta-analysis by the FDA did not confirm the association between ABC use and myocardial infarction (9). Two, it became clear that TDF-induced renal tubulopathy results in decreased bone mineral density due to phosphate wasting and a decreased renal function, both of which might develop into serious complications with long-term TDF use (12-14, 29, 30). On the other hand, greater deteriorations in the levels of lipid markers were noted in ABC/3TC than in TDF/FTC in clinical trials comparing these two agents (16, 17). The present study also demonstrated that the increases in the LDL-cholesterol and triglyceride levels were higher in the ABC/3TC arm than in the TDF/FTC arm.

TDF-induced nephrotoxicity is of particular interest in this study because a low body weight is an important risk factor, and body stature was much smaller in this study population (median baseline body weight 64 kg), than in the ASSERT study (72 kg), which compared the renal function between patients receiving ABC/3TC and TDF/FTC with efavirenz in Europe (17, 18, 20). This study showed that changes in the renal function from baseline were not significantly different between the two arms, similar to the findings of the ASSERT study. None of the patients in the TDF/FTC arm exhibited progression of CKD stage. On the other hand, the levels of urinary β2 microglobulin deteriorated significantly from baseline in the TDF/FTC arm, whereas improvements were observed in the ABC/3TC arm. This is also similar to the findings reported by the ASSERT trial. This suggests that urinary β2 microglobulin is a more sensitive marker for evaluating TDF nephrotoxicity than the renal function calculated by serum creatinine, as also demonstrated in our previous work (31). Tubular resorption of phosphate, another marker examined to evaluate the renal tubular function, did not exhibit any changes from baseline or between the two arms, suggesting that urinary β2 microglobulin may be a better marker for evaluating TDF nephrotoxicity than tubular resorption of phosphate. Of note, in both arms, the renal function did significantly decrease from baseline. To our knowledge, this is the first randomized trial comparing ABC/3TC and TDF/FTC that observed deterioration of the renal function after the initiation of ART. This result highlights the importance of regular monitoring of renal function after initiation of ART, although it is difficult to draw a firm conclusion on the prognosis of the renal function from this study, due to the limited length of the observation period and the small number of enrolled patients.

Only one patient (1.9%) in the ABC/3TC arm developed a clinically suspected ABC-associated hypersensitivity reaction, which was diagnosed based on the appearance of a skin rash and fever six weeks after commencement of the study drug. The patient fully recovered after discontinuation of the drugs. The ASSERT trial of HLA-B*5701-negative patients reported a similar incidence (3%) of clinically suspected ABC hypersensitivity reactions (17). The one case observed in our trial could be a false positive, because ABC hypersensitivity reactions commonly occur 9-11 days after the initiation of therapy (32), and ABC hypersensitivity was not confirmed immunologically. Nonetheless, immediate discontinuation of ABC is highly recommended even in HLA-B*5701-negative patients suspected of ABC hypersensitivity, since ABC hypersensitivity can occur in such patients (33) and errors in genotyping for HLA or reporting a genotype might occur in practice (34).

Several limitations of this trial should be acknowledged. First, due to the shortage of enrolled patients, the trial was insufficiently powered to test non-inferiority of the viral efficacy of ABC/3TC against TDF/FTC, as initially planned. However, the safety and tolerability data of these regimens in Asia are a valuable asset for patients from this region, and efficacy data could be utilized as part of a meta-analysis in the future. Second, the enrolled subjects were mostly men (primarily men who had sex with men and very few injection drug users). Further studies are needed to examine the efficacy and safety of these regimens in women and patients with different routes of transmissions in Asia.

In summary, this randomized trial demonstrated high efficacy and safety of fixed-dose ABC/3TC and TDF/FTC in combination with ATV/r over 96 weeks for treatment-naïve Japanese patients with a baseline HIV-1 viral load <100,000 copies/mL, although it was insufficiently powered to show non-inferiority of the viral efficacy of ABC/3TC compared with TDF/FTC. ABC/3TC with ATV/r is a safe and efficacious initial regimen for treating HLA-B*5701-negative patients with a baseline HIV-1 viral load <100,000 copies/mL.

Author’s disclosure of potential Conflicts of Interest (COI).
Uchiimi H: Research funding, ViiV Healthcare. Koibuchi T: Research funding, Nihon Ultmarc Inc. Naito T: Research funding,
References

27. DIVISION OF AIDS TABLE FOR GRADING THE SEVERITY OF ADULT AND PEDIATRIC ADVERSE EVENTS VERSION 1.0, DECEMBER, 2004; CLARIFICATION AUGUST 2009. [http://www.mtnstopshiv.org/sites/default/files/attachments/Table_for_Grading_Severity_of_Adult_Pediatric_Adverse_Events.pdf].

