Significant Contribution of Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography (FDG PET/CT) in a Case of Acute Lymphoblastic Leukemia Presenting with Fever of Unknown Origin

Ferhat Arslan¹, Mesut Yılmaz¹, Tansel Çakır² and Ali Mert³

Abstract

The diagnostic value of fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) has not been thoroughly evaluated in patients with leukemia. We herein report the case of a patient with B cell acute lymphoblastic leukemia (ALL) presenting with fever of unknown origin (FUO) who was diagnosed after FDG PET/CT indicated diffuse bone marrow involvement.

Key words: positron emission tomography, fever of unknown origin, leukemia

(Intern Med 53: 789-791, 2014)
(DOI: 10.2169/internalmedicine.53.1443)

Introduction

Diseases that cause fever of unknown origin (FUO) range from infections to malignancies and autoimmune diseases (1). In recent years, fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) has been used as the last resort diagnostic modality in FUO patients, with great success, where conventional methods have failed (2, 3). Both anatomic and metabolic information has proved to have significant benefits in the diagnostic workup of FUO. We herein report the case of a patient with B cell acute lymphoblastic leukemia (ALL) presenting with FUO who was diagnosed after FDG PET/CT showed diffuse bone marrow involvement.

Case Report

A 51-year-old man was referred to our hospital due to a high fever and asthenia for the previous four months. The findings of a physical examination were normal, except for hepatomegaly. A hemogram showed a white blood cell count of 5,480/mm³ (neutrophils, 37.6%; basophils, 3.4%; monocytes, 24.7%; lymphocytes, 34.3%), a hemoglobin level of 10.7 g/dL and a platelet count of 238,000/mm³. Routine biochemistry tests were normal, except for the erythrocyte sedimentation rate (101; normal range <20/hour) and levels of serum ferritin (1,827; normal range 30-400), triglycerides (232; normal range <150 mg/dL), lactate dehydrogenase (1,091 IU/L; normal range, 135 to 225 IU/L) and C-reactive protein (69.46 mg/L; normal range, <5 mg/L). Contrast-enhanced thorax and abdominal computed tomography revealed no evidence of abnormalities, except for hepatomegaly (190 mm). FDG PET/CT performed to rule out any possible malignant neoplasms showed a diffuse high FDG uptake in the bone marrow (Figure). A bone marrow biopsy revealed 30% lymphoblasts, and the results of a flow cytometric immunophenotypic analysis were compatible with the findings of precursor B cell lymphoblastic leukemia. A flow cytometric immunophenotyping analysis showed that approximately 44% leukemic cells expressed CD19, CD20, CD22, CD10 and CD34 Tdt+ antigens, compatible with a diagnosis of precursor B cell lymphoblastic leukemia. breakpoint cluster region (BCR)/ABL was negative using the polymerase chain reaction (PCR) method. No abnormalities were found in the bone marrow karyotype analysis.
Ennishi et al. reported a patient referred to PET/CT scanning during our search of the medical literature. Various hematological malignancies, particularly lymphomas, have been reported (4-9). Case reports showing the diagnostic value of PET/CT in various forms of leukemia, including in intramedullary and extramedullary relapse of acute myeloid leukemia, myeloid sarcoma, plasma cell leukemia and NK-cell leukemia, have been reported (4-9). PET/CT is a very important tool in the diagnosis and staging of hematological malignancies, particularly lymphomas. Routine hematologic and radiologic (CT and MRI techniques) investigations did not reveal any abnormalities. FDG PET/CT showed a diffuse and increased bone marrow uptake, and the bone marrow aspirate revealed 98% lymphoblasts (10). In the second case, FDG PET/CT was performed to detect and evaluate an inflammatory focus in a patient with FUO. Diffuse homogeneous FDG uptake was observed in the bone marrow without splenomegaly. The final diagnosis was ALL (11).

In recent years, PET/CT has become a critical diagnostic tool in patients with FUO as a last resort procedure (12). This modality has made a significant contribution to the differential diagnosis of FUO. Keidar et al. reported that PET/CT identified the underlying cause of fever in 22 (46%) of 48 patients and contributed to the diagnosis in 90% of the patients (13). Bleeker-Rovers et al. evaluated the distribution of diagnosis among patients with FUO based on published cases. They reported that the percentage of undiagnosed patients with FUO has increased from 9% to 51%, albeit in association with the development of medical diagnostic procedures, in the last fifty years (14).

In conclusion, if PET/CT reveals a diffuse high FDG uptake in the bone marrow on an evaluation of FUO while the examination of the peripheral blood shows no remarkable abnormalities, then a bone marrow biopsy should be considered in order to make a diagnosis of hematological malignancy.

The authors state that they have no Conflict of Interest (COI).

References

