Azygos Vein Aneurysm Mimicking a Calcified Lymph Node

Yu Sato, Kengo Murata, Akihiko Wada and Mikio Takamori

Key words: azygos vein, computed tomography

(Intern Med 55: 3405-3406, 2016)
(DOI: 10.2169/internalmedicine.55.6809)

A 66-year-old female who had been receiving treatment for a non-tuberculous pulmonary mycobacterial infection underwent enhanced computed tomography (CT). A well-circumscribed, high density nodule, measuring 12 mm in diameter, was noted in the right main bronchus (Picture 1) and it was initially considered to be a calcified mediastinal lymph node that had been caused by the mycobacterial infection. However a plain CT scan conducted 2 months later produced no abnormal findings (Picture 2). Subsequent CT angiography showed the presence of contrast material in a fusiform azygos vein aneurysm (AVA) from 12 seconds (Picture 3) after the infusion of the contrast material, suggesting that the blood stream, flowing backward from the superior vena cava, had thus become stagnated in the AVA.

Department of Respiratory Medicine, Tokyo Metropolitan Tama Medical Center, Japan
Received for publication November 10, 2015; Accepted for publication March 22, 2016
Correspondence to Dr. Yu Sato, you_satou@tmhp.jp
A three-dimensional reconstruction of the CT angiography also revealed AVA (Picture 4).

AVA is a rare condition (1), however, when it does occur, making an accurate diagnosis can be difficult because this condition may mimic the appearance of a calcified mediastinal lymph node. AVA often enlarges (1), thus posing the risk of rupture (2).

The optimal treatment for AVA remains controversial, but surgical intervention is recommended in cases complicated by rupturing, embolisms, or obstruction (3), none of which was found in our case. We therefore carefully monitored the AVA to identify any changes in its size.

The authors state that they have no Conflict of Interest (COI).

References


The Internal Medicine is an Open Access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view the details of this license, please visit (https://creativecommons.org/licenses/by-nc-nd/4.0/).