Usefulness of Ustekinumab for Treating a Case of Myelodysplastic Syndrome-associated Inflammatory Bowel Disease

Masashi Kono¹, Toshiharu Sakurai¹, Kazuki Okamoto¹, Tomoyuki Nagai¹, Yoriaki Komeda¹, Hiroshi Kashida¹, Kosuke Minaga¹, Ken Kamata¹, Mamoru Takenaka¹, Satoru Hagiwara¹, Tomohiro Watanabe¹, Naoshi Nishida¹, Eisuke Enoki², Hiroaki Inoue¹, Itaru Matsumura¹ and Masatoshi Kudo¹

Abstract:
Autoimmune diseases including inflammatory bowel disease (IBD) occur in association with myelodysplastic syndrome (MDS). MDS-associated IBD frequently demonstrates a complicated course. We herein report the first case with MDS-associated IBD that was successfully treated with ustekinumab (UST), an anti-interleukin (IL) 12/23p40 monoclonal antibody. A 63-year-old man with a 7-year history of MDS was referred for examination of diarrhea, abdominal pain and fever. A blood examination revealed a marked elevation of C-reactive protein. Colonoscopy showed multiple ulcers in the terminal ileum. He was resistant to anti-tumor necrosis factor (TNF)-α antibody and azacitidine. Subsequently, UST treatment reduced colonic IL-17 and IL-6 expression and the patient currently maintains a state of remission.

Key words: MDS, IBD, Crohn’s disease, Behçet’s disease, ustekinumab


Introduction
Myelodysplastic syndrome (MDS), a clonal hematologic disorder with impaired cell differentiation, is associated with dysregulated hematopoiesis, peripheral cytopenia, and a risk of leukemic progression. Increasing data support the role of innate and adaptive immune pathways in the pathogenesis and disease course of MDS (1). Inflammatory bowel disease (IBD) is a chronic inflammatory disease characterized by a dysregulated immune response. IBD including Crohn’s disease (CD) and Behçet’s disease (BD) has been reported to coexist with MDS (2-9). MDS-associated IBD is frequently resistant to medical treatment, such as steroids, and anti-tumor necrosis factor (TNF)-α agents. In addition, immunosuppressive therapy could result in life-threatening infections due to MDS-associated leukocytopenia. Thus, MDS-associated IBD often demonstrates a refractory and complicated course (4, 8).

We experienced a patient with MDS-associated IBD who was successfully treated with ustekinumab (UST), an anti-interleukin (IL) 12/23 p40 monoclonal antibody. UST treatment reduced IL-17 and IL-6 expression levels in the colonic mucosa, suggesting that Th17 cells might play an important role in the pathogenesis of MDS-associated IBD.

Case Report
A 63-year-old male patient was referred in 2010 with pancytopenia and was diagnosed to have MDS, WHO subtype refractory cytopenia with multilineage dysplasia. Trisomy 8 was present in his bone marrow. Six years later, he was referred to our department due to diarrhea, abdominal pain and fever. He had a history of oral ulceration. However,
Figure 1. (A) Endoscopic image of the patient with MDS-associated IBD. A large ulcer was observed at the terminal ileum before ustekinumab (UST) treatment, and it shrank after UST treatment. The patient was successfully treated with UST. (B) The clinical course before and after UST therapy.

A pathological analysis of colon biopsy specimens exhibited a marked infiltration of inflammatory cells and the destruction of the crypt architecture. An immunohistochemical analysis showed the inflammatory cells to consist of CD68+ macrophages, CD4+ T cells, CD8+ T cells and myeloperoxidase+ neutrophils.

Considering the endoscopic findings, we diagnosed this case as CD associated with MDS. However, it may be difficult to distinguish intestinal BD from CD due to similarities in intestinal and extra-intestinal manifestations, and pathologic findings (10). We consider this case to have MDS-associated IBD. The patient was resistant to an anti-TNF-α agent, infliximab, and azacytidine treatment, and then treated with total parenteral nutrition. He relapsed when he resumed enteral feeding, which resulted in repeated hospitalization. After the initiation of UST, he was discharged in September 2017. An endoscopic examination showed the shrinkage of ulcers 6 months after UST started: an ulcer occupying one-third of the circumference decreased in size to less than 10 mm in diameter surrounded by a regenerative epithelium (Fig. 1A). A marked reduction in the serum CRP level was observed 10 months after the initiation of UST (Table). A decrease in the white blood cell and platelet counts after UST therapy led to an improvement of intestinal inflammation, while the effects of such drugs as UST could not be excluded. He has been in clinical remission for...
Immunological responses are increasingly recognized as being important in the initiation and progression of MDS (1). Indeed, autoimmune diseases occur in association with MDS, particularly in subtypes with a low risk of leukemic transformation. Elevated IL-17 levels and IL-17-induced interferon (IFN)-γ and TNF-α overproduction may be involved in the pathogenesis of MDS. The number of CD3+ CD4+ IL-17 producing T cells (Th17) has been shown to markedly increase in low risk MDS. The enhanced Th17: Tregs ratio in low risk MDS may account for the high risk of autoimmune disease including IBD (13, 14). UST inhibits the IL12/23 signaling pathway, leading to reduced Th17 responses. Our findings showed that UST therapy reduced the expression of IL-17 and IL-6 in the colonic mucosa, and successfully maintained clinical remission in the patient with MDS-associated IBD. These findings suggest that Th17 might be involved in the pathogenesis of MDS-associated IBD.

CD shares many characteristics with intestinal BD, including genetic background, and clinical manifestations. Both diseases may represent an aberrant immune activity triggered by exposure to specific infectious or environmental agents in patients with an underlying genetic predisposition (10). Genome-wide association studies revealed that IL10 and IL23R variants were observed in CD patients (15). An association for BD with IL10 and the IL23R-IL12RB2 loci, although in different polymorphisms, was also reported (16, 17) suggesting that CD and BD have similar pathogeneses and genetic backgrounds. The major susceptibility gene for CD is nucleotide oligomerization domain 2/caspase-activation recruitment domain (NOD2/CARD15) (18), while the common variants in NOD2 found in Caucasian patients with CD are not detected in the Japanese population (19). The only modest sensitivity and specificity of HLA-B51 for BD implies that it has limited diagnostic value (20). Thus, the differential diagnosis between CD and intestinal BD remains a challenge for clinicians because of significant clinical, and diagnostic overlap.

MDS-associated IBD frequently demonstrates a refractory and complicated course (4, 8). Consistently, this case was a primary non-responder to anti-TNF-α therapy and resistant to the administration of azacytidine. In addition, we experienced two fatal cases of MDS-associated IBD. One case included genetic background, and clinical manifestations. Both diseases may represent an aberrant immune activity triggered by exposure to specific infectious or environmental agents in patients with an underlying genetic predisposition (10). Genome-wide association studies revealed that IL10 and IL23R variants were observed in CD patients (15). An association for BD with IL10 and the IL23R-IL12RB2 loci, although in different polymorphisms, was also reported (16, 17) suggesting that CD and BD have similar pathogeneses and genetic backgrounds. The major susceptibility gene for CD is nucleotide oligomerization domain 2/caspase-activation recruitment domain (NOD2/CARD15) (18), while the common variants in NOD2 found in Caucasian patients with CD are not detected in the Japanese population (19). The only modest sensitivity and specificity of HLA-B51 for BD implies that it has limited diagnostic value (20). Thus, the differential diagnosis between CD and intestinal BD remains a challenge for clinicians because of significant clinical, and diagnostic overlap.

MDS-associated IBD frequently demonstrates a refractory and complicated course (4, 8). Consistently, this case was a primary non-responder to anti-TNF-α therapy and resistant to the administration of azacytidine. In addition, we experienced two fatal cases of MDS-associated IBD. One case included genetic background, and clinical manifestations. Both diseases may represent an aberrant immune activity triggered by exposure to specific infectious or environmental agents in patients with an underlying genetic predisposition (10). Genome-wide association studies revealed that IL10 and IL23R variants were observed in CD patients (15). An association for BD with IL10 and the IL23R-IL12RB2 loci, although in different polymorphisms, was also reported (16, 17) suggesting that CD and BD have similar pathogeneses and genetic backgrounds. The major susceptibility gene for CD is nucleotide oligomerization domain 2/caspase-activation recruitment domain (NOD2/CARD15) (18), while the common variants in NOD2 found in Caucasian patients with CD are not detected in the Japanese population (19). The only modest sensitivity and specificity of HLA-B51 for BD implies that it has limited diagnostic value (20). Thus, the differential diagnosis between CD and intestinal BD remains a challenge for clinicians because of significant clinical, and diagnostic overlap.
To the best of our knowledge, this is the first case of MDS-associated IBD successfully treated with UST. Given the low risk of serious side effects in UST therapy (21), UST treatment might be recommended for MDS-associated IBD. In CD, preceding primary non-response to anti-TNF-α agent is clinical predictor for more favorable response to UST compared with secondary non-response to anti-TNF-α therapy (21), which was consistent with the findings of our case. It should be noted, however, that confirmation of these considerations awaits future studies addressing the efficacy and safety of UST treatment in a large number of patients with MDS-associated IBD.

The authors state that they have no Conflict of Interest (COI).

Financial Support
This research was supported by grants from the Japanese Foundation for Research and Promotion of Endoscopy (JFE) and JSPS KAKENHI (JP17K09396 and 17H06404) and Grants-in-Aid for Scientific Research on Innovative Area “Frontier Research on Chemical Communications (FY2017-2021).

Acknowledgement
This study was approved by the relevant institutional review boards (28-224).

References


The Internal Medicine is an Open Access journal distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view the details of this license, please visit (https://creativecommons.org/licenses/by-nc-nd/4.0/).