CASE REPORT

Glutamic Acid Decarboxylase Autoantibody-negative Slowly Progressive Type 1 Diabetes Mellitus: A Case Report and Literature Review

Michi Kobayashi¹, Nobumasa Ohara¹, Yohei Ikeda², Ouki Nagano³, Toshinori Takada⁴, Makoto Kodama⁵ and Hirohito Sone⁶

Abstract:
A 59-year-old non-obese Japanese woman developed diabetes mellitus with a negative glutamic acid decarboxylase autoantibody (GADA) test result. Her hyperglycemia was initially well controlled by oral hypoglycemic agents; however, despite continued treatment the hyperglycemia gradually worsened. As she had endogenous insulin deficiency and tested positive for insulin autoantibody (IAA), insulin therapy was initiated. Few studies have investigated GADA-negative patients with slowly progressive type 1 diabetes mellitus (SPT1D). Our IAA-positive SPT1D patient progressed from the clinical onset of diabetes mellitus to starting insulin therapy relatively quickly (1.5 years), similarly to other previously reported non-obese patients with GADA-positive SPT1D.

Key words: C-peptide immunoreactivity, human leukocyte antigen, insulin autoantibody, type 1 diabetes mellitus

Introduction

Type 1 diabetes mellitus (T1D) is a heterogeneous, metabolic disease characterized by an immune-mediated progressive destruction of pancreatic beta cells, usually leading to an absolute insulin deficiency (1). The rate of beta cell destruction is quite variable from case to case, being rapid in some individuals (mainly children) and slow in others (mainly adults); the former condition is referred to as simply as T1D, while the latter is referred to as latent autoimmune diabetes in adults (LADA) (2).

There are some ethnic heterogeneities in the clinical presentation and genetic background of T1D (3-5). In Japan, T1D is classified into three subtypes according to the manner of onset and progression: fulminant, acute-onset, and slowly progressive (6). Slowly progressive T1D (SPT1D) which is related to LADA in other countries, including Western and Asian populations, is characterized by a gradual decrease in endogenous insulin secretion, clinical features similar to those of type 2 diabetes mellitus (T2D), and the presence of circulating autoantibodies against islet antigens (7). Patients with SPT1D eventually become dependent on insulin therapy, whereas patients with LADA require insulin therapy less frequently (8, 9).

Islet-related autoantibodies reflect the autoimmune destruction of pancreatic beta cells in patients with T1D (10). The major autoantibodies in clinical use include glutamic acid decarboxylase autoantibodies (GADA), islet cell antibodies (ICA), insulinoma-associated antigen-2 autoantibodies (IA-2Ab), insulin autoantibodies (IAA), and zinc transporter 8 autoantibodies (ZnT8Ab).
A 61-year-old Japanese woman was admitted to our hospital in May 2017 because of persistent thirst, polyuria, and fatigue. The patient had a history of diabetes mellitus since November 2015 (at 59 years of age) and visited a local doctor in January 2016 because of persistent thirst, polyuria, and fatigue, and a BW loss (5 kg) over the 2-month period. Her BW, blood pressure, and pulse rate were 42.6 kg, 117/71 mmHg, and 65 beats per minute. Funduscopic examination revealed no diabetic retinopathy. No thyroid struma, chest rales, heart murmurs, abdominal tenderness, or peripheral edema were present. The patient had no numbness in her hands or feet and had normal Achilles tendon reflexes. A blood analysis revealed high levels of casual plasma glucose (530 mg/dL) and glycated hemoglobin (HbA1c) (14.0%), and normal levels of serum total cholesterol (199 mg/dL) and triglycerides (99 mg/dL); she tested negative for GADA (<5.0 U/mL) (Cosmic Corporation, Tokyo, Japan). The patient was diagnosed with diabetes mellitus and received medical treatment with diet therapy (1,360 kcal/day) and oral hypoglycemic agents, including metformin, linagliptin, and glimepiride (Figure). She experienced an improvement in her hyperglycemia and symptoms, and her HbA1c values decreased to approximately 7% within 6 months. However, the hyperglycemia gradually became poorly controlled, despite continuing the same treatment, and she experienced recurrent hyperglycemic symptoms of thirst, polyuria, fatigue, and BW loss. The patient was referred to our hospital and was admitted in May 2017.

Upon admission, the patient’s height and BW were 149 cm and 37.5 kg, respectively (body mass index [BMI]: 16.9 kg/m²). Her body temperature, blood pressure, and pulse rate were 36.6°C, 104/71 mmHg, and 65 beats per minute. Funduscopic examination detected no diabetic retinopathy. No thyroid struma, chest rales, heart murmurs, abdominal tenderness, or peripheral edema were present. The patient had no numbness in her hands or feet and had normal Achilles tendon reflexes. A blood analysis revealed high levels of casual plasma glucose (350 mg/dL) and HbA1c (10.8%), and a urinalysis was normal.
negative for ketone bodies (Table 1). The patient tested negative for GADA (<5.0 IU/mL), ICA (a negative qualitative test result), IA-2Ab (<0.4 U/mL), and ZnT8Ab (<15.0 U/mL), but an IAA test (185.9 nU/mL; reference range, <125.0 nU/mL) (Yamasa Corporation, Tokyo, Japan) was positive. Abdominal computed tomography detected no abnormalities in the liver, spleen, pancreas, or kidneys.

To resolve the hyperglycemia, the patient started multiple daily injections using basal once-daily glargine and meal-time lispro on the day of admission (Figure). A meal load test performed on day 3 of admission revealed a low serum C-peptide immunoreactivity (S-CPR) level of 1.0 ng/mL after eating breakfast (Table 2A), suggesting T1D with a decreased endogenous insulin secretion capacity. Human leukocyte antigen (HLA) typing revealed the presence of A*24:02/26:03, B*15:01/40:02, and C*03:03/03:04 class I genes and DRB1*09:01/(-), DQB1*03:03/(-), DQA1*03:02/(-), and DPB1*02:01/05:01 class II genes. The patient tested negative for anti-nuclear antibodies, rheumatoid factor, pituitary gland autoantibodies, thyroid peroxidase autoantibodies, thyroglobulin autoantibodies, thyroid-stimulating hormone receptor autoantibodies, gastric parietal cell autoantibodies, intrinsic factor autoantibodies, and adrenal cortex autoantibodies.

The patient was discharged on day 10 of admission after a self-management diabetes education program. She continued diabetes treatment with multiple daily injections (insulin glargine 6 units/day and insulin lispro 12 units/day) at the outpatient clinic of our hospital. In December 2017, her BW was 45.1 kg, and laboratory findings showed an HbA1c value of 7.1% (Figure). A glucagon stimulation test revealed S-CPR levels of 0.3 ng/dL (Ta-
The patient, a Japanese woman with hyperglycemic symptoms that had persisted for 2 months, was diagnosed with diabetes mellitus with a negative GADA test result, IA-2Ab (≤0.4 U/mL), and ZnT8Ab (≤15.0 U/mL), and positive for IAA (565.5 nU/mL). The patient’s course has been uneventful and there have been no complications during insulin therapy.

Discussion

The patient, a Japanese woman with hyperglycemic symptoms that had persisted for 2 months, was diagnosed with diabetes mellitus with a negative GADA test result and started medical treatment with appropriate diet therapy and oral hypoglycemic agents, before they require insulin therapy (7). In the present case (Figure and Table 2), the clinical course of our patient before and after the initiation of exogenous insulin therapy was not explained by the “honey-moon phase” of acute-onset T1D but was consistent with that typical of SPT1D.

Table 3 presents a summary of reported Japanese patients with SPT1D who tested negative for GADA. The cases include adults of both sexes and different ages. The time from the onset of diabetes mellitus to the initiation of insulin therapy varied among the cases, ranging from 1 to 4 years. The patients had the HLA class II DRB1*04:05-DQB1*04:01 or DRB1*09:01-DQB1*03:03 haplotype. They tested positive for one or more islet-related autoantibodies other than GADA, such as IA-2Ab, ZnT8Ab, and IAA. Our patient is the first reported case of GADA-negative SPT1D associated with IAA positivity.

IAA is a circulating autoantibody against insulin, specific to beta-cell autoantigens, which is frequently detected in patients with new-onset T1D (10, 23). Only a small portion of GADA-positive LADA patients test positive for IAA (17, 24), whereas a study of Japanese patients revealed IAA positivity in approximately one-third of GADA-positive patients with SPT1D before the initiation of insulin therapy (12). IAA can also be detected in patients with insulin autoimmune syndrome, a rare metabolic disorder that is characterized by severe spontaneous hypoglycemic attack (25). However, exogenous insulin injection can elicit antibody responses that cannot be distinguished from IAA production (10). In the present case, the patient tested positive for IAA before she started insulin therapy, during the course of decreasing endogenous insulin secretion accompanied by severe chronic hyperglycemia. These findings indicate that the IAA positivity in our patient sensitively reflects the autoimmune destruction of pancreatic beta cells and helped us to make the diagnosis of SPT1D.

Studies of GADA-positive LADA have revealed that the endogenous insulin secretion in non-obese patients tends to decrease more quickly than that in obese patients (9). A study of GADA-positive Japanese patients with SPT1D also revealed that non-obese patients are likely to exhibit greater decreases in endogenous insulin secretion in comparison to obese patients; they are also likely to have a shorter period between the onset of diabetes mellitus and the initiation of insulin therapy, with a median period of approximately 1.5 years (26). On the other hand, patients with LADA or SPT1D who have a lower GADA titer or a smaller number of other islet-related autoantibodies may have a slower decline in endogenous insulin secretion (9, 11, 12, 27), whereas the presence of IAA is a predictor of a rapid decrease in endogenous insulin secretion (15). In the present case, our non-obese GADA-negative patient with single IAA positivity exhibited a short duration from the onset of diabetes mellitus to the initiation of insulin therapy, which was similar to the course of previously reported non-obese Japanese patients with GADA-positive SPT1D (26), and she ex-

Table 2. Evaluation of Residual Endogenous Insulin Secretory Capacity.

<table>
<thead>
<tr>
<th></th>
<th>Before</th>
<th>2 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-CPR (ng/mL)</td>
<td>0.2</td>
<td>1.0</td>
</tr>
<tr>
<td>Plasma glucose (mg/dL)</td>
<td>80</td>
<td>306</td>
</tr>
</tbody>
</table>

Blood samples were taken on day 3 after admission before and 2 h after ingestion of a 450 kcal breakfast (9 AM). The patient started multiple daily injections with insulin glargine (at bedtime) and insulin lispro (at each mealtime) on the day of admission. The injection of insulin lispro was briefly discontinued at breakfast on the day of the test.

S-CPR: serum C-peptide immunoreactivity

<table>
<thead>
<tr>
<th></th>
<th>Before</th>
<th>6 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-CPR (ng/mL)</td>
<td>0.2</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Blood samples were taken in a fasting state before and 6 min after glucagon (1 mg) was administered intravenously (9 AM).

ble 2B), indicating that she was in an insulin-dependent state. She tested negative for GADA (<5.0 IU/mL), ICA (a negative qualitative test result), IA-2Ab (<0.4 U/mL), and ZnT8Ab (<15.0 U/mL), and positive for IAA (565.5 nU/mL). The patient’s course has been uneventful and there have been no complications during insulin therapy.

Table 2. Evaluation of Residual Endogenous Insulin Secretory Capacity.

<table>
<thead>
<tr>
<th></th>
<th>Before</th>
<th>2 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-CPR (ng/mL)</td>
<td>0.2</td>
<td>1.0</td>
</tr>
<tr>
<td>Plasma glucose (mg/dL)</td>
<td>80</td>
<td>306</td>
</tr>
</tbody>
</table>

Blood samples were taken on day 3 after admission before and 2 h after ingestion of a 450 kcal breakfast (9 AM). The patient had started multiple daily injections with insulin glargine (at bedtime) and insulin lispro (at each mealtime) on the day of admission. The injection of insulin lispro was briefly discontinued at breakfast on the day of the test.

S-CPR: serum C-peptide immunoreactivity

<table>
<thead>
<tr>
<th></th>
<th>Before</th>
<th>6 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-CPR (ng/mL)</td>
<td>0.2</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Blood samples were taken in a fasting state before and 6 min after glucagon (1 mg) was administered intravenously (9 AM).
T1D is a multifactorial disease caused by a complex interaction of genetic and environmental factors. Among candidate genes, HLA class II confers the greatest risk of T1D, but alleles associated with T1D differ among ethnic groups due to differences in allele distribution in the general population. It is thought that LADA shares susceptible class II HLA genes with T1D in Caucasian populations, whereas studies of other ethnic groups, including Chinese populations, have suggested that the susceptibility genes of T1D and LADA are distinct. In Japan, the HLA associations with SPT1D differ from those with fulminant T1D, whereas the HLA associations with SPT1D are similar to those with acute-onset T1D (albeit weaker). The susceptible HLA class II genes in Japanese patients with SPT1D include HLA DRB1*04:05-DQB1*04:01 and DRB1*09:01-DQB1*03:03 haplotypes, which are associated with insulin deficiency. In our patient, the presence of the HLA DRB1*09:01-DQB1*03:03 haplotype likely contributed to the development of SPT1D.

In conclusion, we reported the case of a GADA-negative non-obese Japanese patient with IAA-positive SPT1D who experienced progression to almost complete insulin deficiency within 2 years after the onset of diabetes mellitus (Table 2B).

The authors state that they have no Conflict of Interest (COI).

Acknowledgement
The authors thank the clinical laboratory technicians of...
References

34. Katahira M, Segawa S, Maeda H, Yasuda Y. Effect of human leu-

The Internal Medicine is an Open Access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view the details of this license, please visit (https://creativecommons.org/licenses/by-nc-nd/4.0/).

© The Japanese Society of Internal Medicine

Intern Med Advance Publication