A Case of Pulmonary *Mycobacterium abscessus* Subspecies *abscessus* Disease That Showed a Discrepancy Between the Genotype and Phenotype of Clarithromycin Resistance

Yusuke Yamaba, Osamu Takakuwa, Manami Saito, Daisuke Kawae, Misuzu Yoshihara, Yuta Mori, Eiji Kunii, Yutaka Ito, Shiomi Yoshida and Kenji Akita

Abstract:
Mycobacterium abscessus subspecies *abscessus* is major subspecies in the *M. abscessus* complex and is usually refractory to standard antibiotherapy. Genetic tracing of *erm*(41) T28 is a mechanism for monitoring macrolide resistance. We treated a patient with a pulmonary infection caused by *M. abscessus* subsp. *abscessus* with the *erm*(41) T28 polymorphism, which was susceptible to clarithromycin, and his clinical treatment course was good. The identification of the *M. abscessus* complex genotype is important, but clinical confirmation of clarithromycin susceptibility is also needed to plan individual treatment strategies.

Key words: *Mycobacterium abscessus*, inducible resistance, *erm*(41)

Introduction

The prevalence of non-tuberculous mycobacteria (NTM) infection has been increasing worldwide (1-3). *Mycobacterium abscessus* complex belongs to a member of the rapidly growing mycobacteria (RGM) group among NTM, and the frequency of RGM differs among regions; for example, it is 3% in Japan (4) and 5% in Australia (5). However, in Korea, the frequency is 33%, which is the second highest frequency after that of *Mycobacterium avium* complex (MAC) (6).

From a clinical aspect, the importance of this species is that it is often refractory to antibacterial treatment. In recent years, *M. abscessus* complex has been classified into *M. abscessus* subsp. *abscessus* (*M. abscessus*), *M. abscessus* subsp. *massiliense* (*M. massiliense*), and *M. abscessus* subsp. *bolletii* (*M. bolletii*) (7, 8). The *Mycobacterium abscessus* complex has acquired resistance by point mutations in the *rrl* gene at positions 2,057-2,059 (9, 10). In addition, *M. abscessus* and *M. bolletii* have inducible resistance to macrolide, which is induced by *erm*(41), whereas *M. massiliense* has a dysfunctional *erm*(41) due to two characteristic deletions and is susceptible to macrolides (11, 12). The response rate to antibiotic therapy including clarithromycin (CAM) was much higher in patients with pulmonary *M. massiliense* disease than in those with pulmonary *M. abscessus* disease due to the function of *erm*(41). Furthermore, *M. abscessus* strains harbor a T/C polymorphism at the 28th nucleotide in *erm*(41). T28 sequvar strains (Trp10 codon) demonstrate inducible CAM resistance, while C28 strains (Arg10 codon) are susceptible to CAM (13). Therefore, identification of *M. abscessus* complex subspecies and genetic typing of *erm*(41) have clinical value for predicting the efficacy of antibiotic therapy and developing appropriate treatment strategies.

We herein report the case of a 55-year-old man with pulmonary *M. abscessus* infection whose clinical course differed from that predicted based on subspecies identification and *erm*(41) typing.

1Department of Respiratory Medicine, Nagoya City West Medical Center, Japan, 2Department of Education and Research Center for Advanced Medicine, Japan, 3Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Japan and 4Department of Clinical Research Center, National Hospital Organization Kinki-chuo Chest Medical Center, Japan

Received: November 15, 2018; Accepted: March 19, 2019; Advance Publication by J-STAGE: June 7, 2019

Correspondence to Dr. Osamu Takakuwa, takakuwa@med.nagoya-cu.ac.jp
We herein present a case of pulmonary *M. abscessus* disease caused by *M. abscessus* carrying *erm(41)* T28 sequevar. Although this genotype tends to suggest resistance to CAM (13), the strain was susceptible to CAM without inducible resistance and the patient showed a good clinical response to CAM-containing antimicrobial treatment. Therefore, the genotype of *erm(41)* T28 sequevar in pulmonary *M. abscessus* disease did not predict a poor clinical response in this case.

Recently, Yoshida et al. reported that a subset of *M. abscessus* isolates (9.5%) presented with genetically functional *erm(41)* but no phenotypic inducible resistance (15), as observed in the strain isolated from our patient. Previous reports that investigated the *erm(41)* sequevar classification may have failed to predict inducible resistance correctly (15, 16). These findings suggest the importance of carrying out DST for CAM during the development of treatment strategies for *M. abscessus* infection without relying solely on identification using a genetic approach.

The Clinical and Laboratory Standards Institute recommends that DST be performed with culturing at 30°C and determined 3 days later using cation-adjusted Mueller-Hinton broth (pH 7.4) for RGM (17). If the strain is resistant on day 3, then resistance is caused by the *rrl* gene mutation. If the strain is judged to be sensitive to CAM on day 3, assessing the inducible resistance, which is associated with the *erm(41)* gene (18, 19), should be carried out using an additional extended culture with an assessment on day 14. In Japanese clinical practice, DST of NTM is usually performed using a BrothMIC NTM® kit with Middlebrook 7.
H9 (Kyokuto Pharmaceutical Industrial Co., Ltd., Tokyo, Japan) as the liquid growth medium and culturing at 37°C. However, a BrothMIC NTM® kit is inadequate for RGM. We attempted DST using BrothMIC NTM® and obtained a different result at the late phase on day 14 compared to our findings using the recommended method (Table). In addition, sequencing of the \(\text{erm}(41) \) gene is a particularly important diagnostic tool for assessing the clarithromycin susceptibility in isolates of \(M. \text{abscessus} \) complex, although, genetic identification for \(M. \text{abscessus} \) complex is not performed in clinical Mycobacterium laboratories in Japan. The development of kits that can be used for RGM is therefore needed.

In the present case, \(M. \text{abscessus} \) infection was detected by the onset of pneumothorax. The frequency of pneumothorax complications is reported to be 4.1% in pulmonary NTM disease (20). Regarding the \(M. \text{abscessus} \) complex, some cases with complication of pneumothorax have been reported (21-23). In the present case, lung image findings revealed consolidation with cavities near the pleura, which is a possible cause of pneumothorax. If \(M. \text{abscessus} \) complex infection is misdiagnosed as MAC, inadequate treatment can result in a poor treatment course. Physicians should therefore consider \(M. \text{abscessus} \) complex as a causative disease of pneumothorax.
In conclusion, we encountered a case of pulmonary *M. abscessus* infection in which the isolated strain showed discrepancies between the genotype and phenotype concerning CAM resistance. Identifying the *M. abscessus* complex species and the *erm* (41) genotype is crucial; however, carrying out DST for CAM also has importance in properly treating this infection.

The authors state that they have no Conflict of Interest (COI).

References

22. Pang YK, Ngeow YF, Wong YL, Llam CK. Mycobacterium abscessus - to treat or not to treat. Respirol case reports **1**: 31-33, 2013.