Remarkable Shrinkage of a Growth Hormone (GH)-secreting Macroadenoma Induced by Somatostatin Analogue Administration: A Case Report and Literature Review

Kiyoe Kurahashi¹, Itsuro Endo¹, Takeshi Kondo¹, Kana Morimoto¹, Sumiko Yoshida¹, Akio Kuroda², Ken-ichi Aihara¹, Munehide Matsuhisa³, Kohei Nakajima³, Yoshifumi Mizobuchi³, Shinji Nagahiro³, Masahiro Abe¹ and Seiji Fukumoto⁴

Abstract:
Acromegaly is caused by excessive growth hormone secretion, usually from pituitary adenomas. Somatostatin analogues are widely used as primary or adjunctive therapy in the management of acromegaly. In this report, we present a case with remarkable shrinkage of a tumor after relatively short-term octreotide long-acting release (LAR) administration. During the 30-month follow-up after starting octreotide LAR, there was no recurrence of acromegaly with remarkable shrinkage of the tumor on pituitary magnetic resonance imaging. A literature review of the predictors for tumor shrinkage after the administration of somatostatin analogues in patients with acromegaly is also discussed in relation to this case.

Key words: GH-secreting macroadenoma, somatostatin analogue, remarkable shrinkage

Introduction
Acromegaly results from excessive growth hormone (GH) secretion by pituitary adenomas in over 98% of cases (1). At the time of the diagnosis of acromegaly, more than 70% of patients have macroadenomas. The treatment goals of acromegaly are to normalize the biochemical abnormalities and control the tumor mass in order to prevent worsening of morbidity and mortality (2-4). At present, the main options for the management of acromegaly are surgery, radiotherapy and medical therapies. Long-acting somatostatin analogues, octreotide long-acting release (LAR), slow release lanreotide and lanreotide autogel are currently the treatments of choice in patients with acromegaly as both primary and adjuvant therapies. It has been demonstrated that these medications are effective in controlling GH and insulin-like growth factor (IGF)-1 levels and reducing pituitary tumor volume (3). Although the biochemical response rates for octreotide LAR and lanreotide autogel are reported to be as high as 70-80%, only a small number of case reports describing the complete disappearance of GH-secreting pituitary tumors as evaluated by magnetic resonance imaging (MRI) have been published (5-9). We herein report a case of acromegaly wherein the GH-secreting pituitary macroadenoma showed remarkable shrinkage with biochemical remission induced by octreotide LAR.

Case Report
A 57-year-old Japanese man presented with an 8-month history of bitemporal hemianopia. MRI revealed a pituitary macroadenoma of 3×5 cm. Given the worsening of his hemianopia, he was admitted to the neurosurgery department...
The patient’s height and body weight were 177 cm and 71 kg, respectively (body mass index: 22.5 kg/m²). His waist circumference was 89 cm. His blood pressure was 130/76 mmHg. He had an evident acral enlargement with prominence of the supracilliary arches. The hormonal data before octreotide LAR treatment are shown in Table 1. The diagnosis of acromegaly was confirmed by an elevated level of GH-secreting adenomas following the administration of somatostatin analogues. Seven cases were reported, and three patients had macroadenomas. In these 3 cases, long-term treatment (24 to 62 months) with somatostatin analogues have been reported (27-32). Table 2 shows a summary of the previously reported cases. Seven cases of complete disappearance of GH-secreting adenomas following the administration of somatostatin analogues have been reported (21-26).

Table 1. Patient’s Hormonal Data before Octreotide LAR Treatment.

<table>
<thead>
<tr>
<th>Hormone</th>
<th>Results</th>
<th>Reference range</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGF-1 (ng/mL)</td>
<td>566</td>
<td>82-236</td>
</tr>
<tr>
<td>Basal GH (ng/mL)</td>
<td>4.41</td>
<td><2.47</td>
</tr>
<tr>
<td>Nadir GH post-glucose</td>
<td>1.25</td>
<td><0.4</td>
</tr>
<tr>
<td>Nadir GH octreotide test</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>Nadir GH bromocriptine test</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>Prolactin (ng/mL)</td>
<td>1.4</td>
<td>3.8-12.4</td>
</tr>
<tr>
<td>ACTH (pg/mL)</td>
<td>57.3</td>
<td>7.2-63.3</td>
</tr>
<tr>
<td>Cortisol (μg/dL)</td>
<td>18.1</td>
<td>4.0-18.3</td>
</tr>
<tr>
<td>TSH (μU/mL)</td>
<td>1.55</td>
<td>0.5-5.0</td>
</tr>
<tr>
<td>Free T4 (ng/dL)</td>
<td>0.84</td>
<td>0.7-1.4</td>
</tr>
<tr>
<td>LH (mIU/mL)</td>
<td>1.0</td>
<td>1.8-5.2</td>
</tr>
<tr>
<td>FSH (mIU/mL)</td>
<td>2.4</td>
<td>2.9-8.2</td>
</tr>
<tr>
<td>Free testosterone (pg/mL)</td>
<td>4.3</td>
<td>4.6-109.6</td>
</tr>
</tbody>
</table>

Colao et al. summarized the results of treatment with octreotide LAR in patients with acromegaly. A total of 956 patients had been treated with various doses of octreotide LAR (10-40 mg, monthly) for 12-108 months. Control of the GH and IGF-1 levels was achieved in 60% (37-72%) and 59% (34-75%) of patients, respectively (10). Other studies reported tumor shrinkage in 70% (9-88%) of 627 patients treated with octreotide LAR (11-20). On the other hand, the biochemical remission and tumor shrinkage rates defined as at least 20% reduction-in patients treated with slow-release lanreotide or lanreotide autogel were not higher than those treated with octreotide LAR, or only a few data were reported (21-26).

Only a few cases of complete disappearance of GH-secreting adenomas following the administration of somatostatin analogues have been reported (27-32). Table 2 shows a summary of the previously reported cases. Seven cases were reported, and three patients had macroadenomas. In these 3 cases, long-term treatment (24 to 62 months) with somatostatin analogues was necessary to achieve the complete disappearance of GH-secreting macroadenomas. In addition, two of these three cases with macroadenomas did not reach biochemical remission. Furthermore, pituitary adenoma recurred six months after the discontinuation of lanreotide autogel in one of these patients. These data suggest that GH-secreting macroadenomas may need a longer treatment period for tumor shrinkage than microadenomas. Furthermore, it may be difficult to obtain biochemical remission along with the disappearance of macroadenomas by somatostatin analogues. The present case with GH-secreting macroadenoma achieved biochemical improvement and remarkable tumor shrinkage after six months of treatment with octreotide LAR. Biochemical remission and the near disappearance of the tumor were maintained for 30 months during treatment with a somatostatin analogue.

Some reports have investigated the factors that favor efficacy of somatostatin treatment (33-36). Female gender, an older age at the diagnosis, lower basal GH or IGF-1 levels, low GH levels on the octreotide suppression test, a small tu-
50μm

Figure 1. Histology of the resected pituitary tumor. Hematoxylin and Eosin staining shows an acidophilic adenoma (A). Immunohistochemistry indicates strong GH immunostaining (B). Almost all of the pituitary tumor cells expressed somatostatin receptor 2 (SSTR2) (C). Few positive tumor cells were observed in Ki-67 immunostaining (Ki-67 index <0.5%) (D). Anti-CAM-5.2 immunostaining revealed a dot-like cytokeratin pattern with perinuclear staining in a few tumor cells (E).

mor size or at least 75% tumor reduction after surgery, MRI T2 hypo-intensity, granulation pattern by a histological analysis and elevated expression of somatostatin receptor (SSTR) 2,5 and/or ZAC1, a tumor suppression gene, in GH-secreting adenomas are reported to be factors associated with a better response to somatostatin analogues. In contrast, male gender, a younger age at the diagnosis, higher basal GH and IGF-1 levels, large tumors, invasiveness of tumors, T2 high-intensity, sparsely granulated pattern by a histological analysis, lower expression of SSTR, a high labeling index of Ki-67, mutations and/or truncated isoforms of SSTR5 and aryl hydrocarbon receptor interacting protein (AIP) expression with mutations were unfavorable predictors for treatment with somatostatin analogues (Table 3). Female patients likely showed a better response to somatostatin analogues than male patients due to the upregulation of somatostatin receptors by estrogen (37). Younger patients potentially harbor more aggressive GH-secreting pituitary tumors, which may explain why an older age at diagnosis (e.g. >65 years) corresponded to better somatostatin analogue responsiveness (38, 39). Indeed, 6 of the 7 patients who achieved complete disappearance of their tumors were female, and all of them were middle-aged or elderly (Table 2).

Lower GH and IGF-1 levels at diagnosis have also been reported to be independent predictive factors of tumor shrinkage by somatostatin analogues (40). Some reports have shown that an acute suppression test by somatostatin analogues was helpful for predicting the response to long-term treatment (41-43). Our case also showed relatively low basal GH and IGF-1 levels compared with extremely large
Figure 2. Pituitary MRI images at baseline [coronal T1 gadolinium-contrast enhancement (Gd-CE), A], sagittal T1 Gd-CE (B), T2 coronal (C), after partial resection of GH-secreting adenoma (coronal T1 Gd-CE: D, sagittal T1 Gd-CE: E), after 6 months of treatment with octreotide LAR (coronal T1 Gd-CE: F, sagittal T1 Gd-CE: G, H), after 24 months (coronal T1 Gd-CE: I, sagittal T1 Gd-CE: J, K) and after 30 months (coronal T1 Gd-CE: L, sagittal T1 Gd-CE: M, N).

Figure 3. Changes in the serum GH and IGF-1 levels after partial resection of GH-secreting adenoma and during treatment with octreotide LAR. The blue and red broken lines indicate the upper limits of the reference ranges of GH and IGF-1 respectively.

GH-secreting tumors and had a good response to the octreotide suppression test (Table 1). A large tumor size and invasiveness to the cavernous sinus reduce the likelihood of being cured by somatostatin analogues (44).

MRI T2-weighted hypo-intensity of adenoma was associated with densely granulated cells, lower invasiveness and a better response to somatostatin analogues. In contrast, T2-weighted hyper-intensity imaging suggests a sparse granulation pattern as assessed by immunohistochemistry, with greater invasiveness and a poorer response to somatostatin analogues (45). Our case showed a large tumor without cavernous sinus invasion and T2-weighted iso-intensity. The lack of invasion to the cavernous sinus may have contributed to the good response to octreotide LAR in our case. The
SSTR expression and Ki-67 index may also be predictors of the efficacy of somatostatine analogues (33). In our case almost all of the tumor cells expressed SSTR2, and the Ki-67 index was low (Fig. 1C, D). These factors may have contributed to the good response to octreotide LAR. Furthermore, cytokeratin staining using the CAM 5.2 antibody showed a mixed pattern (Fig. 1E), which suggested that a non-dot pattern type for GH-secreting tumors is a predictor of the good response to somatostatin analogues (46). We did not check the histopathological or molecular determinants, including the SSTR5 expression, ZAC1 expression, SSTR5 mutation and truncated isoform or AIP gene expression and mutation.

We herein reported a case of acromegaly that showed remarkable shrinkage of a GH-secreting pituitary macroadenoma with biochemical remission induced by octreotide LAR. Further understanding of the clinical, molecular, and histopathological predictors of the responsiveness to somatostatin analogues will help optimize individualized treatments.

The authors state that they have no Conflict of Interest (COI).

References

For more information, please refer to the cited references.