Microscopic Polyangiitis That Presented Liver Dysfunction Prior to Noted Renal Manifestations

Teruko Nakamoto, Masahide Yoshikawa*, Toshiya Nakatani, Yoshiko Yamane, Shu Iwasawa, Madoka Matsumoto, Masaki Kawanami, Kimio Nishimura, Shigehiko Ueda** and Hiroshi Fukui**

Abstract

In microscopic polyangiitis (MPA), renal manifestations are very common as first symptoms. Here, we report a case of MPA which presented liver dysfunction prior to noted renal manifestations. A 58-year-old woman was hospitalized because of a fever for 8 weeks. A laboratory examination revealed marked elevation of alkaline phosphatase and γ-glutamyl transpeptidase, while blood urea nitrogen and creatinine levels remained normal. Although apparent renal dysfunction developed in this case soon after hospitalization, physicians should be aware of the variety of clinical manifestations in MPA. Moreover, antineutrophil cytoplasmic autoantibodies were found to be helpful for diagnosing MPA.

(Internal Medicine 39: 517-521, 2000)

Key words: antineutrophil cytoplasmic autoantibodies (ANCA), small vessel vasculitis, crescentic glomerulonephritis, corticosteroid

Introduction

Small vessel vasculitis (SVV) is well known to be injurious to the kidney (1–5). Recently, anti-neutrophil cytoplasmic autoantibodies (ANCA) have been recognized as useful markers for diagnosing SVV and have been classified into two subsets by indirect immunofluorescent microscopy. One displays a perinuclear pattern (p-ANCA), which mainly reacts with myeloperoxidase (MPO), and the other displays a cytoplasmic staining pattern (c-ANCA), which reacts with a serine proteinase called proteinase 3 (PR3). Herein, we report a female patient with MPO-ANCA-positive SVV who presented liver dysfunction prior to the appearance of manifested renal dysfunction.

For editorial comment, see p 449.

Case Report

A 58-year-old woman visited our hospital on October 2, 1998, after enduring a fever for 8 weeks. She had no history of diseases or hospitalization, except for giving birth twice when in her twenties. Her height was 143 cm and her body weight was 42 kg. Her body temperature was 38.3°C, her pulse was regular at 98/min, and her blood pressure was 140/80 mmHg. There was no rash or superficial lymphadenopathy. Her complexion was pallor and her sclera was not icteric. Findings on examination of her heart and lungs were normal, and there was no tenderness in the abdomen. The liver, gall bladder, spleen, and kidneys could not be felt. There was no peripheral edema, and neither arthralgia nor peripheral neuropathy were observed. The results of her laboratory tests are shown in Table 1. Urine was trace positive for protein and blood. The sediment contained 5-9 red blood cells, when viewed by high-power microscopy. A feces sample was negative for occult blood. A blood examination disclosed leucocytosis with neutrophil prevalence (white blood cells 11,500/μl, 86.6% neutrophils), elevated C-reactive protein (CRP, 13.5 mg/dl), and liver dysfunction including alkaline phosphatase (ALP) 996 U/l and γ-glutamyl transpeptidase (γ-GTP) 274 U/l. The blood urea nitrogen (BUN) and creatinine (Cr) levels were both normal, while the antinuclear antibody (ANA) was highly positive and IgG was increased. The levels of complement C3, C4, CH50, and IgM were all within normal ranges. The anti-mitochondrial antibody (AMA) was not detected. All of examinations including abdominal ultrasonography (US), chest X-P, abdominopelvic computed tomography (CT), and endoscopic retrograde cholangiopancreatography found no abnormalities. Before visiting us, she had consulted two neighborhood physicians on August 29 and September 21, 1998, and was treated with a non-steroidal anti-inflammatory drug (NSAID) for 2 days by

From the Department of Internal Medicine, Takanohara General Hospital, Nara, *the Department of Parasitology and **the Third Department of Internal Medicine, Nara Medical University, Kashihara
Received for publication July 27, 1999; Accepted for publication December 14, 1999
Reprint requests should be addressed to Dr. Masahide Yoshikawa, the Department of Parasitology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521

Internal Medicine Vol. 39, No. 6 (June 2000)
Table 1. Laboratory Data on Admission

<table>
<thead>
<tr>
<th>Urinalysis</th>
<th>RBC</th>
<th>413x10^4/µl</th>
<th>BUN</th>
<th>15 mg/dl</th>
<th>anti-RNP</th>
<th>4.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td>(±)</td>
<td>11.1 g/dl</td>
<td>Cr</td>
<td>1.0 mg/dl</td>
<td>anti-Sm</td>
<td>1.8</td>
</tr>
<tr>
<td>Occult blood</td>
<td>(±)</td>
<td>34.6%</td>
<td>Na</td>
<td>136 mEq/l</td>
<td>anti-CL-β2GP1 <1.3 U/ml</td>
<td></td>
</tr>
<tr>
<td>Sugar</td>
<td>(2+)</td>
<td>50.7x10^4/µl</td>
<td>K</td>
<td>4.1 mEq/l</td>
<td>C3</td>
<td>88 mg/dl</td>
</tr>
<tr>
<td>Sediment</td>
<td></td>
<td>147 mm/hr</td>
<td>Cl</td>
<td>92 mEq/l</td>
<td>C4</td>
<td>26.9 mg/dl</td>
</tr>
<tr>
<td>RBC</td>
<td>5–9/HPF</td>
<td></td>
<td>CRP</td>
<td>13.5 mg/dl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WBC</td>
<td>1–4/HPF</td>
<td></td>
<td>Glu</td>
<td>120 mg/dl</td>
<td>anti-thyroglobulin < ×100</td>
<td></td>
</tr>
<tr>
<td>Epithel no casts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hematology WBC</td>
<td>11,500/µl</td>
<td>1.9 U</td>
<td>IgG</td>
<td>2,650 mg/dl</td>
<td>anti-microsome < ×100</td>
<td></td>
</tr>
<tr>
<td>Neutr</td>
<td>86.6%</td>
<td>10.5 U</td>
<td>IgA</td>
<td>364 mg/dl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lym</td>
<td>7.3%</td>
<td>19 IU/l</td>
<td>IgM</td>
<td>10 mg/dl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mono</td>
<td>4.0%</td>
<td>996 IU/l</td>
<td>IgE</td>
<td>86 IU/ml</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eosino</td>
<td>1.1%</td>
<td>274 IU/ll</td>
<td>γ-gl</td>
<td>2.05 g/dl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baso</td>
<td>0.9%</td>
<td>95 IU/l</td>
<td>RF</td>
<td>18 U/ml</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>T-CHO</td>
<td>71 mg/dl</td>
<td>ANA(speci ed) ×2,550</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TG</td>
<td>158 mg/dl</td>
<td>anti-DNA</td>
<td>4.2 IU/ml</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LE test</td>
<td>negative</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AMA</td>
<td>< ×10</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Laboratory Data before Admission

<table>
<thead>
<tr>
<th>Urinalysis</th>
<th>29 Aug, 21 Sep</th>
<th>Blood chemistry</th>
<th>29 Aug, 21 Sep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td>(–) (+)</td>
<td>TP (g/dl)</td>
<td>7.0</td>
</tr>
<tr>
<td>Occult blood</td>
<td>(±) (–)</td>
<td>AST (IU/l)</td>
<td>26 18</td>
</tr>
<tr>
<td>Sugar</td>
<td>(–) (–)</td>
<td>ALT (IU/l)</td>
<td>25 18</td>
</tr>
<tr>
<td>Hematology WBC</td>
<td>7,300 10,400</td>
<td>ALP (IU/l)</td>
<td>420</td>
</tr>
<tr>
<td>Neutr</td>
<td>33%</td>
<td>γ-GTP (IU/l)</td>
<td>124</td>
</tr>
<tr>
<td>Lym</td>
<td>12.4</td>
<td>BUN (mg/dl)</td>
<td>11 10</td>
</tr>
<tr>
<td>Mono</td>
<td>38</td>
<td>Cr (mg/dl)</td>
<td>1.0 0.9</td>
</tr>
<tr>
<td>Eosino</td>
<td>35.1</td>
<td>β2-MG (mg/l)</td>
<td>1.3</td>
</tr>
<tr>
<td>Baso</td>
<td>31.3</td>
<td>CRP (mg/dl)</td>
<td>8.5</td>
</tr>
</tbody>
</table>

Normal range: β2-MG (β2-microglobulin) 0.8–2.4.

the first doctor and with antibiotics and another NSAID for 3 days by the second. Almost no effect was observed. Laboratory data obtained on August 29 and September 21 are shown in Table 2. Elevated ALP and γ-GTP were already present on August 29. A lymphocyte stimulation test, performed after admission using these NSAIDs and antibiotics, did not give positive results, suggesting it unlikely that her abnormal liver function was due to the use of these drugs.

A definite response to a 5-day treatment with antibiotics or the detection of pathogenic organisms in cultures from urine and blood could not be obtained, while a worsening of her renal functions gradually appeared, along with apparent proteinuria and microscopic hematuria, causing us to suspect systemic vasculitis rather than infection. Therefore, we performed an ANCA checkup. The BUN and Cr levels had reached 40 mg/dl and 2.6 mg/dl, respectively, on October 13, when we learned that MPO-ANCA was positive at 236 enzyme-linked immunoassay units (EU). We made a diagnosis of microscopic polyangiitis (MPA), a type of ANCA-associated vasculitis, according to the recent international nomenclature definitions of systemic vasculitis (5). Simultaneously, we introduced corticosteroid therapy, initiating intravenous administration of methylprednisolone 1.0 g/day for 3 days followed by an oral administration of prednisolone, starting at a daily dose of 40 mg. PR3-ANCA was negative. After reaching this diagnosis, we again attempted to discover any manifestations, even subclinical, related to organs other than the kidneys and liver including lungs, skin, muscle, gastrointestinal tract and eyes.
Figure 1. Clinical course and laboratory data of the patient. mPSL: methyl-prednisolone, PSL: prednisolone, CTM: Cefotiam, SBT/CPZ: sulbactam/cefoperazone.

However, no abnormalities were found. In addition, peripheral nerves in extremities showed normal conduction velocity.

Prompt improvement in clinical symptoms and laboratory findings was obtained after the start of corticosteroid therapy (Fig. 1). ALP and y-GTP values were normalized within two weeks, but her Cr levels remained at around 1.5 mg/dl. A US-guided needle biopsy was performed from the right kidney on October 23. The specimen contained 16 glomeruli, of which one glomerulus was almost completely destroyed and in the process of being replaced by fibrosis (Fig. 2, right), while eight glomeruli presented segmental fibrinoid necrosis. Six out of the eight showed focally fractured Bowman’s capsules, and two of them were accompanied by a small cellular crescent formation. Infiltration of inflammatory cells was observed in the interstitium surrounding the destroyed Bowman’s capsules (Fig. 2, left). Necrotizing inflammation involving interlobular arteries was not found. Deposition of immunoglobulin and complements was not detected by immunohistologic staining. On November 4, we performed a percutaneous needle biopsy from the right lobe of the liver. Although few inflammatory infiltrates were observed in the portal tracts, intramural fibrinoid degeneration was found in an interlobular arteriole (Fig. 3). Moreover, the epithelial cells of the bile duct adjacent to the affected arteriole seemed to be disarranged.

Remission was achieved while prednisolone was gradually being tapered and maintained at a daily dose of 7.5 mg. The CRP levels did not exceed 1.0 mg/dl and hematuria was controlled at negative or trace positive by a tape method, although a complete normalization of serum was not obtained. The patient is now under maintenance therapy with prednisolone (7.5 mg/day) and dipyridamole (300 mg/day).

Discussion

In 1993, the Chapel Hill Consensus Conference for the Nomenclature of Systemic Vasculitis agreed on the names and definitions of many vasculitides that affect the kidneys (5). Based on the definitions determined in the international consensus, we diagnosed the present patient as having MPA. However, we could not reach this diagnosis before the development of apparent renal manifestations such as hematuria, proteinuria, and elevated Cr levels. The most frequent clinical features in systemic vasculitis, especially in SVV, are renal manifestations, although they may vary according to the severity and stage of the underlying renal injury. In the present case, neither proteinuria nor hematuria was apparent at the beginning of hospitalization, which led us to consider systemic vasculitis as unlikely. We had believed the possible diagnosis to be infection, malignancy, drugs-induced liver disease, or those complicated with some biliary tract disease such as primary biliary cirrhosis, primary sclerosing cholangitis, or common bile duct stones.

The presence of ANCA was helpful for diagnosing systemic vasculitis. ANCA-positive SVV (ANCA-SVV) is divided into three major clinicopathologic categories; MPA, Wegener’s granuloma, and Churg-Strauss syndrome (3–5). They share
Nakamoto et al

Figure 2. Light microscopic findings of the renal biopsy specimens (PAS stain, ×400). Left: Cellular crescent formation in Bowman’s capsules and marked infiltration of inflammatory cells in the interstitium. Right: A glomerulus which is almost completely destroyed and being replaced by fibrosis.

Figure 3. Light microscopic findings of the liver biopsy specimen. Fibrinoid degeneration in the wall of an interlobular arteriole (arrow) was found (Azan stain, ×400).

Pathologically identical necrotizing inflammation in the small vessels. Wegener’s granuloma is distinguished by the presence of necrotizing granulomatous inflammation involving the respiratory tract, Churg-Strauss syndrome by the presence of asthma and eosinophilia, and MPA by the absence of granulomatous inflammation, eosinophilia, or asthma, as was seen in the present case.

The kidneys are the most often affected organ in the majority of patients with MPA and renal manifestations are usually the first symptoms. Glomerular capillaries are affected most often, resulting in necrotizing glomerulonephritis, usually in a crescent formation, with no or few immune deposits able to be proven at the sites of vasculitis and glomerulonephritis, all of which are consistent with the present case. A recent study analyzing 85 patients with MPA (6) demonstrated that renal manifestations were the most frequent, being present in 67 patients (78.8%), as well as fever and weight loss. However, other manifestations related to skin (62.4%), nerve (57.6%), joint (50.6%), muscle (48.2%), gastrointestinal tract (30.6%), and lung (24.7%) have also been observed. Therefore, it should be emphasized that a wide variety of clinical manifestations may exist due to the varying tissue distribution of ANCA-SVV inflammatory lesions among patients.

According to the same study, 10 patients (11.8%) were reported to show abnormal findings in liver function tests, such as an elevation of aspartate aminotransferase (AST) and/or alanine aminotransferase (ALT) levels. However, the liver dysfunction seen in the present case was an elevation of ALP and γ-GTP, not AST or ALT. Furthermore, the appearance of liver dysfunction was prior to the noted renal manifestations. Recently, a case of MPA similar to our patient was reported (7), in whom liver dysfunction consisting of an elevation of ALP and γ-GTP developed before noted renal manifestations. Liver biopsies from that patient revealed necrotizing arteritis, infiltration of inflammatory cells to the portal tract surrounding the affected artery, and subsequent fibrosis of the portal tract. In the present case, however, only a few inflammatory infiltrates were observed in the portal area and no hepatic artery branch was found in the liver needle-biopsy specimens that displayed active necrotizing lesions. Even though almost no findings demonstrating arteritis in the liver specimens were observed, a small intramural fibrinoid degeneration was found in an interlobular arteriole, suggesting preceding arteriolitis in the liver. Irregularly arranged epithelial cells of the adjacent bile duct also suggested involvement of the bile duct in the inflammatory process. Considering that a 3-week treatment of prednisolone preceded the liver biopsy, it is possible that active inflammation was inhibited by the anti-inflammatory effects of corticosteroid prior to the liver biopsy. We believe that prominent,
but not severe, arteritis existed in the liver before the institu-
tion of corticosteroid.

It is known that angiograms of affected organs are often
helpful to detect medium-sized vessel involvement in patients
with systemic vasculitis (8). Microaneurysms and/or multiple
vessel stenosis reflect medium-sized vessel involvement. Al-
though MPA is defined by necrotizing vasculitis affecting small
vessels, medium-sized vessel vasculitis may be present (5). We
should have considered an angiogram of the liver when we
suspected systemic vasculitis. Microaneurysms and/or multiple
vessel stenosis, when present on hepatic arteriograms, suggest
the presence of arteritis in the liver. However, the frequency of
abnormal angiograms has been reported to be very low in pa-
tients with ANCA-SVV (8).

To suppress the vascular inflammation promptly, we admin-
istered high-dose corticosteroid (1 g/day of methylprednisolone)
initially by pulse intravenous therapy on three consecu-
tive days, followed by daily oral dosing of 40 mg (about 1 mg/
kg body weight), tapered to 7.5 mg over 4 months and then
maintained at that dose. Cyclophosphamide can also be used
either intravenously or orally in combination with corticoste-
roid as a drug of induction therapy (3, 4). In the present pa-
tient, improvement of renal function along with resolution of
hematuria was obtained by the corticosteroid mono-therapy.
The patient is now under a maintenance therapy with pred-
nisolone (7.5 mg/day) and dipyridamole (300 mg/day).

According to studies examining prognostic factors in SVV
(6, 9, 10), the following items were considered to be attribut-
able; (a) the entry-level serum creatinine value, (b) the sev-
ery of renal disease, (c) proteinuria, (d) the presence of pul-
monary disease, (e) the presence of cardiomyopathy, (f) the
presence of gastrointestinal tract involvement, (g) the presence
of central nervous system involvement, and (h) the use of cyclo-
phosphamide in combination with corticosteroid. The entry-
level serum creatinine levels are largely attributed to the sever-
ity of renal disease. Among factors (a) to (h), Falk and Jennette
stated in a review article that the most important determinant
of patient survival is the presence or absence of pulmonary
hemorrhage (4). We recently lost another patient with MPA
due to this complication (11). Some French investigators (6, 9)
have advocated the five-factors score (FFS), a scoring system
used to predict the outcome of patients with MPA, which com-
prises (a) creatinine level > 1.58 mg/dl, (c) proteinuria > 1 g/
day, (e), (f), and (g). According to the FFS, our patient scored 1
point because a high level of creatinine (2.6 mg/dl at the start
of corticosteroid therapy) was present, thus, we are expecting
an approximately 85% chance of 5-year survival (6).

Until the present time, no signs of relapse, such as those
listed by Nachman et al (12), have been observed. However, it
has been reported that the risk of relapse in mono-therapy us-
ing corticosteroid is three-fold higher as compared to a combi-
nation therapy of corticosteroid and cyclophosphamide (3, 4,
12). In addition to careful observation for clinical manifesta-
tions, we believe that monitoring of the ANCA titers is impor-
tant and useful for the early detection of relapse in the present

References

1) Falk RJ, Jennette JC. Anti-neutrophil cytoplasmic autoantibodies with
specificity for myeloperoxidase in patients with systemic vasculitis and
idiopathic necrotizing and crescentic glomerulonephritis. N Engl J Med
2) Hagen EC, Ballieux BE, van Es LA, Daha MR, van der Woude FJ.
Antineutrophil cytoplasmic autoantibodies: a review of the antigens in-
volved, the assays, and the clinical and possible pathogenetic conse-
1523, 1997.
5) Jennette JC, Falk RJ, Andressy K, et al. Nomenclature of systemic vascu-
6) Guillemin L, Durand-Gasselin B, Cevallos R, et al. Microscopic polyangiitis: clinical and laboratory findings in eighty-five patients. Ar-
7) Goritsas CP, Repanti M, Papadaki E, Lazarou N, Andonopoulos AP.
Intrahepatic bile duct injury and nodular regenerative hyperplasia of the
Antineutrophil cytoplasmic antibodies, abnormal angiograms and patho-
logical findings in polyarteritis nodosa and Churg-Strauss syndrome: in-
dications for the classification of vasculitides of the polyarteritis Nodosa
nodosa and Churg-Strauss syndrome: a prospective study in 342 patients.
10) Hogan SL, Nachman PH, Wilkman AS, Jennette JC, Falk RJ. Prognostic
markers in patients with antineutrophil cytoplasmic autoantibody-associa-
ted microscopic polyangiitis and glomerulonephritis. J Am Soc Nephrol
that presented with massive intestinal bleeding and pulmonary hemor-
rhage (Submitted).
12) Nachman PH, Hogan SL, Jennette JC, Falk RJ. Treatment response and
relapse in antineutrophil cytoplasmic autoantibody-associated microscopic
13) Jayne DR, Gaskin G, Pusey CD, Lockwood CM. ANCA and predicting
14) Geffriaud-Ricouard C, Noel LH, Chaveau D, Houhou S, Grunfeld JP,
Lesave P. Clinical spectrum associated with ANCA of defined antigen
15) Fujimoto T, Kimura A, Ameno M, Shiki H, Dohi K. A case of necrotiz-
ing crescentic glomerulonephritis in which myeloperoxidase antineutrophil
cytoplasmic antibodies (ANCA) reflect the disease activity and recog-
nize various neutrophil cytoplasmic constituents. Nippon Jinzo Gakkai