The Complexity of Tantrix Match Puzzles with Four Colors

AKIHIRO UEJIMA¹,a) FUHITO YANAGITANI¹ SHOHEI TSUKAMOTO¹

Received: July 31, 2012, Accepted: January 11, 2013

Abstract: Tantrix Match is a puzzle in which hexagonal tiles are arranged within a hexagonal lattice board in which there are some fixed tiles. Each tile has painted lines in three of four possible colors, and it is required that all lines that touch on adjacent tiles must match in color. The aim of this research is to determine the computational complexity of this puzzle, and we prove that the generalized Tantrix Match is NP-complete by reduction from the circuit-satisfiability problem (Circuit-SAT).

Keywords: puzzles, Tantrix, computational complexity, NP-completeness

1. Introduction and Definitions

Tantrix*¹ is a hexagonal-tile-based abstract strategy puzzle game invented in 1988 by Mike McManaway of New Zealand. The hexagonal tiles each have three painted lines such that no two lines on a tile have the same color. There are four possible colors of the lines, which in the commercial product are red, green, blue, and yellow. There are also four different ways in which the lines are arranged on the tiles (see Fig. 1), thus the combination of four shapes of tiles and three colors chosen from among four possible colors give a total of 56 different tiles.

There are several different types of commercial Tantrix products, e.g., multi- or single-player versions, and versions that restrict the possible colors. In this paper, we focus on Tantrix Match, which was invented in 2009, and analyze its computational complexity. Tantrix Match is a single-play puzzle in which the number of possible colors is restricted to three, i.e., red, green, and yellow. This puzzle has a set of unique stock tiles and a hexagonal lattice board with pre-placed clue tiles, and it is played by arranging the stock tiles on the empty spaces in the given board according to the following rule (basic constraint): all touching lines must match in color. For an instance of Tantrix Match, the set of stock tiles is the stock set, the set of hexagonal cells in a board that do not have clue tiles form the allocatable area, and a member of the allocatable area is an allocatable cell. Note that the size of the stock set is equal to the size of the allocatable area.

One more rule for all Tantrix puzzles is that the arrangements of tiles cannot contain holes, which are places that do not contain tiles but that are completely enclosed by tiles. We call this condition the hole constraint. In Tantrix Match, this constraint is satisfied by the shape of the given boards.

In this paper, we consider the problem below as a generalization of Tantrix Match, and we prove that the problem without the hole constraint is NP-complete. Note that in the generalization, we may use tiles painted from within four colors. We assume that there exists a catalog consisting of all hexagonal tiles (for example, 56 tiles when using 4 colors) and their initial orientation. We note that the size of such a catalog is constant.

Tantrix Match Problem
Instance: A hexagonal lattice board B with clue tiles, an allocatable area $A_B (A_B \subseteq B)$, and a stock multiset S ($|A_B| = |S|$).
Question: Is there an arrangement of all stock tiles in S on B that satisfies the basic constraint?

Instances of the Tantrix Match problem and their solutions are shown in Figs. 2 and 3. Throughout this paper, tiles with a white or gray background represent stock or clue tiles, respectively, and the blue hexagonal cells on the board B express the allocatable area A_B within B. If hexagonal cells b and b' on a board B have a common edge, b is a neighbor of b'. For a cell b, the set of all neighbors of b in B is denoted by $N_b(b)$, so each cell b has at most six neighbors in B (i.e., $|N_b(b)| \leq 6$).

An arrangement of all stock tiles in S on B can be expressed by a one-to-one mapping $f : A_B \rightarrow S$ and a rotation of each stock tile $f(b) \in S$ that is placed on a hexagonal cell b. If the mapping f is fixed as an input, i.e., the position of all stock tiles on A_B is given, then the only possibility to make S fit is to rotate each stock tile. A problem similar to this was considered in Refs. [1], [2]. M. Holzer and W. Holzer [1] invented the Tantrix rotation problem, which is the Tantrix Match problem with the stipulations that B has no clue tiles and a mapping $f : A_B \rightarrow S$ is fixed as an in-
put (note $A_B = B$ in this case). They proved in Ref. [1] that the Tantrix rotation problem with four colors (but without the hole constraint) is \textit{NP}-complete, moreover in Ref. [2], Baumeister and Rothe showed that the three-color and two-color versions of the problem remain \textit{NP}-complete.

It seems too restrictive that a mapping f is fixed prior to solving the Tantrix Match problem. Positioning the stock tiles on A_B by trial and error is one of the key factors that makes this puzzle entertaining. Consequently, we consider the Tantrix Match problem in which the player is allowed to position the stock tiles. We analyze the time complexity of the Tantrix Match problem as defined above, and we prove the following theorem.

\textbf{Theorem 1} The Tantrix Match problem with four colors available for the painted lines on the tiles, but without the hole constraint, is \textit{NP}-complete.

\section{Proof of \textit{NP} Membership}

In this section, we state and prove Lemma 1 as the first step in proving our claim of \textit{NP}-completeness, that is, Theorem 1.

\textbf{Lemma 1} The Tantrix Match problem is in \textit{NP}.

\textbf{Proof.} Consider a polynomial-time algorithm for verifying the candidates for solution. We suppose that the candidates for B, A_B, and S are expressed as the combination of a one-to-one mapping $f : A_B \rightarrow S$ and a rotation function $r : S \rightarrow \{0, 1, \ldots, 5\}$. For a mapping f and a rotation function r, this means that each tile $f(b) \in S$ is placed on a hexagonal cell b and rotated $r(f(b)) \cdot \pi/3$ radians in a clockwise direction, based on an initial orientation of $f(b)$ (we can see the initial orientation in $O(1)$ time by referring to the catalog data for the tile $f(b)$).

Given such f and r, we can easily check whether a mapping f is one-to-one in $O(|S|)$ time by a search of f, and we can verify the basic constraint in $O(|B|)$ time by checking for every hexagonal cell $b \in B$ that all touching lines between b and $N_B(b)$ match in color.

As mentioned in Section 1, whether the hole constraint is satisfied depends on the shape of a given board; hence, we do not consider how to check the hole constraint. Therefore, the above algorithm outputs “yes” if and only if the candidate satisfies the basic constraint, and it takes a total of $O(|B|)$ time.

In the remainder of this paper, we prove Lemma 2, i.e., we prove the \textit{NP}-hardness of the Tantrix Match problem without the hole constraint.

\textbf{Lemma 2} The Tantrix Match problem with four colors available for the painted lines on the tiles, but without the hole constraint, is \textit{NP}-hard.

\section{The Reduction}

We prove Lemma 2 by reducing the circuit-satisfiability problem (Circuit-SAT for short), which is the problem of satisfying given Boolean circuits $C(v_1, v_2, \ldots, v_n)$ with n Boolean values v_1, v_2, \ldots, v_n, to the Tantrix Match problem. Circuit-SAT has already been shown to be \textit{NP}-complete in Ref. [3]. For presenting a proof by construction, we describe some gadgets that act in circuit-like ways. Our goal is to simulate the behavior of a Boolean circuit by combining these gadgets. For a given Boolean circuit, we construct an instance (B, A_B, S) of a Tantrix Match problem corresponding to that circuit in polynomial time of the number of cells in the hexagonal lattice board.

We can create quite varied and complicated circuits by using only the basic logical gates AND and NOT (note that \{AND, NOT\} is universal), wires, and splits. In the reduction, we must be careful about wire crossing in the circuits. To construct the Tantrix Match puzzle from circuits, we consider the Boolean circuits restricted to a plane. For this purpose, we can replace the wire crossing by McColl’s planar “cross-over” circuit [4] as shown in Fig. 4, which can be constructed by three XOR gates (note that a XOR gate can be expressed as the combination of
which the types of tiles set in the board of circuits, is similar to the reducing technique in Refs. [1], [2]. AND and NOT gates). Our reduction, including the planarization of circuits, is similar to the reducing technique in Refs. [1], [2].

In the following, we consider the Tantrix Match problem in which the types of tiles set in the board \(B \) and included in the multiset \(S \) of stock tiles are restricted to the tiles listed in Fig. 5. We need only to consider the constructions of seven gadgets, which correspond to wires, inputs, outputs, NOT gates, splits, AND gates, and bended wires, and in the following subsections, we will construct such gadgets by using the 13 types of tiles illustrated in Fig. 5 as clue and stock tiles. Table 1 shows information for the combination of types of stock tiles and the gadgets: (1) the tiles of types marked by \(\circ \) will be prepared as stock tiles for each gadget, and (2) if the row of a gadget has \(\bullet \) elements, then this means that the tiles of types marked by \(\bullet \) are not prepared as stock tiles for the gadget, but may be arranged on an essential part of the gadget by diverting from stock tiles prepared for the other gadgets.

After constructing all gadgets that we use for the reduction in the rest of this section, we will explain how to connect our several gadgets by illustrating an instance of the Tantrix Match problem, which simulates a simple Boolean circuit, in Section 4. When connecting between two gadgets except for the wire ones, we insert wire gadgets between them with the aim of combining them without a contradiction.

We will represent \textit{true} by the color \textit{blue} and \textit{false} by the color \textit{red}, and when we say that the input of a certain gadget is \textit{blue} (resp. \textit{red}), we will mean that the input of the corresponding logical gate carries the value of \textit{true} (resp. \textit{false}). The same holds for the output. For a hexagonal cell \(b \) in a sub-board \(B \), a color sequence concerning a line touching \(b \) of a (pre-)placed tile on \(b' \in N_B(\textit{b}) \) is expressed as \(\text{InCOL}_b = (c_0, c_1, \ldots, c_{5}) \) such that \(c_i \in \{r, g, b, y, \ast, -\} \) for \(i = 0, 1, \ldots, 5 \) moving clockwise from the top position, and the \(i \)th mark \(c_i \) in \(\text{InCOL}_b \) is expressed as \(\text{InCOL}_b(i) \). The colors are represented by their initials \(r, g, b, y, \ast \) and \(- \) and \(\ast \) mean suspense and nonexistence, respectively. Similarly, for a cell \(b \in B \) on which a tile \(f(b) \) is arranged, the order of colors of \(f(b) \) on the six sides of \(b \), starting at the top and moving clockwise, are represented as \(\text{OutCOL}_b = (c_0' , c_1', \ldots, c_5') \), such that \(c'_j \in \{r, g, b, y\} \) for \(j = 0, 1, \ldots, 5 \). We define \(\text{OutCOL}_b(j) \) as the \(j \)th mark \(c'_j \) in \(\text{OutCOL}_b \).

3.1 Wire Gadget

A wire gadget \(B_w \) of length three that corresponds to a wire in a circuit is shown in Fig. 6. In addition, we prepare stock tiles (a) and (b), as many in number as the length of the wire gadget. In the case of Fig. 6, three tiles each of types (a) and (b) are prepared as stock tiles for this sub-board. In the wire gadget, clue tiles of types (a) and (b) are fixed on both sides of allocatable cells \(W \), and there exists a red (resp. blue) straight line, which parallel \(W/s \), on clue tiles (a) (resp. (b)) at the left (resp. right) side of the \(W_i \). We call these straight lines \textit{side lines} of wire gadgets.

If the input color of the gadget is \textit{blue}, i.e., the top color of a tile arranged on the cell marked by \(in \) is \textit{blue}, then the color sequence of cell \(W_1 \) is \((*, y, -, b, -, g)\) due to the clue tiles on \(N_B(W_1) \). Hence, the only stock tile on \(W_1 \) that fits the sequence is type (a). In the similar way, we must place a type (a) tile on cell \(W_2 \) (resp. \(W_3 \)) since the sequence of \(W_2 \) (resp. \(W_3 \)) became...
Fig. 8 Swapping red and blue colors of side lines on the wire gadget.

Fig. 7 Solutions to the wire gadget.

Fig. 9 Combination of the wire gadgets with different side colors.

Fig. 10 Input gadget.

Fig. 11 Solutions to the input gadget.

Fig. 12 Output gadget.

3.2 Input Gadget

An input gadget B_{IN} corresponding to an input in a circuit is shown in Fig. 10. In this gadget, we set one stock tile of each of types (a) and (b) in the same way as was done in the wire gadget of length three. We can then place the (a) or (b) tile on cell f of B_{IN}; thus the output color is only blue or red (see Fig. 11). The treatment of other cells in the gadget and the remaining tiles is similar to that of the wire gadgets. We remark that the stock tiles other than types (a) and (b) cannot be positioned on a side cell.

3.3 Output Gadget

The output of a circuit can be represented as shown in Fig. 12. If the input color is either blue or red, the basic constraint is satisfied only when the color is blue.

3.4 NOT Gadget

The NOT gadget B_{NOT}, corresponding to a NOT gate in a circuit, and one tile of type (c) that is set as a stock tile are shown in Fig. 13. Since the color sequence of a unique allocatable cell in
the gadget is \((*, g, -, *, g, -)\), the cell can have a stock tile of type (c). Hence, if the input color is blue (resp. red), then the output is red (resp. blue) as shown in Fig. 14.

3.5 Split Gadget

The split gadget \(B_s\) shown in Fig. 15 simulates splitting a wire into two copies in a circuit. We prepare seven stock tiles of type (d) for a split gadget. A color sequence of \(S_0\) is \((-*, r, *, b, *)\), and if we assume that the input is blue or red, then a tile of type (d) is located on cell \(S_0\).

If the input is blue, then the tile on \(S_0\) is fixed, as shown in Fig. 16. The sequence of cell \(S'_1\) is then \((*, -, y, y, -)\); thus the arrangement of the cell is fixed, and tiles of type (d) are also arranged on the subsequent cells \(S'_2\) and \(S'_3\) in the same way (see the left figure of Fig. 16). As a result, the left output is blue.

On the other hand, we can place a tile of type (d) or type (g) on cell \(S_1\) because its sequence is \((*, b, -, y, r, -)\). If a type (d) tile is placed on \(S_1\) (refer to the right figure of Fig. 16), the sequence of \(S_2\) becomes \((y, *, r, b, -)\). Then \(S_2\) can only have a tile of type (d). Thus tiles of either type (d) or (g) can be placed on cell \(S_3\). When a (g) tile is positioned on cell \(S_3\), we must arrange a tile on the right cell with an out label such that the sequence is \((-*, -, y, g, -)\). However, there exist no stock tiles satisfying such a sequence. Given this situation, we must arrange a (d) tile on \(S_3\). Therefore the right output is also blue, as shown on the left figure of Fig. 17.

For the case in which a tile of type (g) is placed on \(S_1\), \(S_2\) can only have a tile of type (g), since the sequence of \(S_2\) is \((y, *, r, y, -, r)\). Then we can then arrange tiles of either type (d) or (g) on cell \(S_3\). If a (g) tile is arranged on cell \(S_3\), we have no possible tiles to be placed on the right cell with an out label, the sequence of which is \((-*, -, y, g, -)\). Therefore, all the allocated cells of the gadget are fixed, as is shown in the right figure of Fig. 17, and both outputs are blue.

We consider the case where the input is red. For the left- and right-side sets of the allocatable cells in the split gadget, the color sequences are bilaterally symmetric. Hence, our discussion for this case is similar to the above discussion for the case where the input is blue, but with the sub-board reversed left to right. Since the input is red, the tiles on \(S_0\) and \(S_1\) are fixed as shown in Fig. 18. Then, \(S_2\) can have a tile of either type (d) or (f). However, there exist no tiles satisfying the sequence of \(S_3\) for placing an (f) tile. Hence, we can determine a tile arrangement for the right-side cells, as shown in Fig. 18.

For the left side, we can place a tile from among the types (d), (f), and (g) on \(S'_1\) since the sequence of \(S'_1\) is \((*, -b, y, y, r)\). When choosing a tile of type (d) or (f), the sequence of \(S'_2\) becomes \((y, *, -, r, b, *)\); otherwise it is \((y, *, -, y, b, *)\).

In the former case, we can place a tile of either type (d) or (e) on cell \(S'_2\). However, if a tile of type (e) is placed on \(S'_2\), there exist no tiles satisfying the sequence of \(S'_1\). If a tile of type (d) is chosen for \(S'_2\), the candidates for cell \(S'_3\) are tiles of types (d) and (g). If a (g) tile is placed on cell \(S'_3\), we cannot set a tile on the upper out cell. Therefore, a (d) tile is placed on \(S'_3\) and the left output is red (see the left and center figures of Fig. 18).

In the latter case, a tile of type (g) is placed on cell \(S'_3\) from the sequence of \(S'_3\). Then, the sequence of \(S'_1\) becomes \((b, *, b, y, -, r)\), and we can place only a tile of type (d) on cell \(S'_3\) since another candidate (g) is excluded. The arrangement cor-
responding to this case is illustrated in the right figure of Fig. 18. We thus have three solutions when the input is red, and the solutions shown in Fig. 18 represent a circuit in which a wire carrying a value of false is split into two copies. We notice that there exist solutions using all given tiles of type (d) for the cases of both blue and red inputs.

3.6 AND Gadget

Our AND gadget corresponds to an AND gate in a circuit, as illustrated in Fig. 19. Some of the unlabeled allocatable cells shown in the figure are places for arranging the remaining tiles after placing the labeled cells, such as the wire and input gadgets. For an AND gadget, we prepare stock tiles as shown in the green box in Fig. 19, i.e., five tiles each of types (a) and (b), two tiles of type (c), and one tile each of types (e), (f), and (g).

Suppose that the inputs from cells \(w_{1}\) and \(w_{2}\) are either blue or red. Because of the clue tiles on the neighbors of cells \(A_{1}\) and \(A'_{1}\), we can place on these cells only a tile of type (c) with a straight green line. As a result, the order of colors \(r\) exist solutions using all given tiles of type (d) for the cases of blue and red inputs.

We consider a sequence of cells \(w_{1}\) and \(w_{2}\) as shown in Fig. 19. These cells are touched by green and yellow lines from the outside, so \(in_{w_{1}}(1) = g\) and \(in_{w_{1}}(5) = y\) for \(W_{1}\), \(in_{w_{1}}(2) = y\) and \(in_{w_{1}}(4) = g\) for \(W_{2}\). Thus we can arrange only tiles of type (a) and (b) on \(W_{1}\) and \(W_{2}\). As in wire gadgets, the sequence outputs the input color from cell \(in_{1}\), such that \(OutCOLW_{1}(0) = b\) (resp. \(OutCOLW_{2}(0) = r\)) for blue (resp. red) input. In a similar way, a sequence of cells \(W_{1}'\), \(W_{2}'\), \(W_{3}'\) can also be assigned (a) and (b) tiles, and it then behaves as a wire gadget. We have thus fixed a tile arrangement on \(A_{1}, W_{1}, W_{2}, W_{1}', W_{2}', W_{3}'\) and \(W_{3}'\) for each pair of inputs from \(w_{1}\) and \(w_{2}\) (see the left figures of Figs. 20, 22, 24, and 25).

Because of the color sequence \(inCOL_{A_{1}} = \{\ast, y, b, b, \ast, \ast\}\) for inputs (blue, blue), we must place a tile of type (g) on cell \(A_{2}\) and one of type (c) on \(A'_{2}\), as shown in Fig. 20. As a result, the output is blue. The remaining stock tiles for the AND gadget can then be arranged on the unlabeled allocatable cells, as shown in Fig. 21.

If the inputs are \(red, red\) (see Fig. 22), \(inCOL_{A_{1}} = \{\ast, y, r, r, \ast, \ast\}\). With a tile of type (c) placed on cell \(A'_{2}\) the allowable tiles on \(A_{2}\) are limited to type (g). Hence, the arrangement of tiles on the labeled cells is fixed, as shown in the right figure of Fig. 22. The remaining stock tiles can be arranged on the unlabeled allocatable cells, as shown in Fig. 23.
3.7 Bend Gadget

Since wires must bend to connect logical gates in circuits, our construction needs to bend wire gadgets to route between our gate-like gadgets. In our reduction, we can put needed gadgets on a board, in which the parities of the horizontal positions of all the in and out cells of the gadgets are coincident, based on the construction of the above gadgets. Figure 26 illustrates how to shift an in cell to the left or right by two cells. This bend gadget is constructed by using the left or right half of our split gadget.

When shifting an in cell to the left (or right) by 2p cells, we can construct the bended wires by alternating the p bend gadgets shown in the left (or right) figure of Fig. 26 and the p − 1 variant wire gadgets as shown in the left figure of Fig. 9 in Section 3.1.

4. Proof of Correctness of the Reduction

We are now ready to prove Lemma 2, with the help of the gadgets constructed in the previous section.

Proof of Lemma 2. Every gadget except the wire and output gadgets has clue tiles, which are on neighbors of the in and out cells, within the gadget. We consider such gadgets. For the upper right-and-left cells b with clue tiles of the in cells, OutCOLb(2) = g and OutCOLb(4) = y, and for the lower right-and-left cells b′ with clue tiles of the out cells, OutCOLb′(1) = g and OutCOLb′(5) = y (see Fig. 27). Moreover, these gadgets can be divided into four groups illustrated in Fig. 27 for the combination of color patterns in OutCOLa’s and OutCOLb’s. Therefore, we can construct an instance of the Tantrix Match problem, which simulates a given instance of the Circuit-SAT, by combining our gadgets as shown in Fig. 28. The wire gadgets are expressed as cells with frames colored by orange in Fig. 28. For connecting between two gadgets except the wires without a contradiction, we insert the combination of variant wire gadgets between them and switch red and blue colors of their side lines on the wires connecting from the out cells on one gadget to the in cells on another gadget.

Because each component of a circuit can be replaced by a corresponding small gadget and the number of cells in the Tantrix Match problem is polynomial in the number of inputs for the Circuit-SAT problem, our reduction takes polynomial time of the number of inputs for the Circuit-SAT problem.

Let a satisfying truth-value assignment (v1, v2, . . . , vn) of input circuit C with n variables be given. Then we can construct an arrangement satisfying the
Fig. 27 Color patterns on neighbors of in and out cells on gadgets.

Fig. 28 The outline of the reduction for an instance of Circuit-SAT.

5. Conclusions

We have shown that the Tantrix Match problem with four available colors but without the hole constraint is NP-complete by reducing the Circuit-SAT problem to this one. To simulate a Boolean circuit on a hexagonal lattice board with clue and stock tiles, we restricted the types of tiles used as clue and stock tiles (see Fig. 5 in Section 3). Since our constructed instance of the Tantrix Match problem may contain holes, the complexity of the Tantrix Match problem with the hole constraint is still open. It may also be interesting to analyze the complexity of this problem with three colors or less, using a proper subset of our tile restriction or an entirely different set of tiles. Moreover, we note that for each solution of the Circuit-SAT problem there are multiple solutions for the Tantrix Match: some gadgets may have local solutions in our gadgets, and the placing of tiles on allocatable cells without labels is not fixed. This means that the mapping from Circuit-SAT solutions to Tantrix Match solutions is not injective. As an area of future work, one might try to find a reduction such that there is an injective solution for the mapping.

Acknowledgments This research was supported in part by Institute of Informatics, Osaka Electro-Communication University.

References

Akihiro Uejima was born in 1975. He received a B.E. and M.E. from Information Systems Engineering, Department of Information and Computer Sciences, Toyohashi University of Technology in 1998 and 2000, respectively, and Dr. of Informatics degree from Department of Communications and Computer Engineering, Graduate School of Informatics at Kyoto University in 2005. Since 2005, he has been a lecturer in Department of Engineering Informatics, Osaka Electro-Communication University. His research interest is in graph theory, computational complexity. He is a member of the IEICE, IPSJ, the Operations Research Society of Japan, the Language and Automaton Symposium.

Fuhito Yanagitani was born in 1988. He received a B.Sc. from Department of Engineering Informatics, Faculty of Information and Communication Engineering, Osaka Electro-Communication University in 2011. From 2011, he is a student of Master course in Division of Information and Computer Science, Graduate School of Engineering at Osaka Electro-Communication University.

Shohei Tsukamoto was born in 1990. He received a B.Sc. from Department of Engineering Informatics, Faculty of Information and Communication Engineering, Osaka Electro-Communication University in 2012.