Intergeneric and interspecific hybridizations among
Glebionis coronaria, G. segetum and Leucanthemum vulgare

Kiichi Urushibata and Katsuhiro Kondo*

Laboratory of Plant Genetics and Breeding Science, Department of Agriculture, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi City 243-0034, Japan;
*Present Address: Research Institute of Evolutionary Biology, 2-4-28 Kamiyouga, Setagaya-Ku, Tokyo 158-0098, Japan

*Author for correspondence: k3kondo@nodai.ac.jp
Received May 05, 2015; accepted May 29, 2015

ABSTRACT: Cross-hybridizations between Glebionis coronaria (L.) Spach and G. segetum (L.) Fourr., G. coronaria and Leucanthemum vulgare Lam. and G. segetum and L. vulgare by using ovule culture were successfully made the hybrid seedlings. RAPD primer OPA20 was found to isolate respective bands specific to G. coronaria, G. segetum, and L. vulgare. The F1 hybrids between G. coronaria and L. vulgare and G. segetum and L. vulgare showed morphologically rather the maternal-side leaf characters.

KEYWORDS: Glebionis coronaria, Glebionis segetum, Intergeneric hybrids, Interspecific hybrids, Leucanthemum vulgare

The Asteraceae is evolutionally the most advanced family in the plant kingdom and has the largest tribe Anthemideae, so-called Chrysanthemum sensu laio (Kondo et al. 2010) that were considered to be evolved during the glacial epoch (Bremer and Humphries 1993; Kondo et al. 2003, 2009; Pelllicer et al. 2013, 2014). Most of the generic members of the Anthemideae have the basic chromosome numbers of X=9 and moreover, they have diploid chromosome number of 2n=18 up to didiploid chromosome number of 2n=198 (Tahara 1915; Dowrick 1952) that seem to be very rare case in the higher plants. The reason why they have such extra-ordinary higher polyploid series could be the reason why they have large synteny (Kondo et al. 2003). Such large synteny centered in Artemisia and other close relatives were detected and explained by Pelllicer et al. (2013, 2014).

The present study reports intergeneric hybridization between Glebionis and Leucanthemum and intrageneric hybridization between Glebionis segetum (perennial) X G. coronalia (annual) are readily hybridized.

MATERIALS AND METHODS

Plant materials Seeds of the annual Glebionis coronaria were purchased from Takii and Co., Ltd. and those of the perennial G. segetum were sent from the Royal Horticultural Society, United Kingdom and they were planted in pots. A few plants of Leucanthemum vulgare Lam. were purchased from a local nurseries for the present research. Four cross combinations among the three species were cross-pollinated to make hybridization and were, then, isolated with anti-pollination bags (Table 1). Within eight to 15 days after the last hand pollination, the inflorescences pollinated were harvested. Their ovaries were isolated under a stereomicroscope and were sterilized in 10% sodium hypochlorite solution for ten minutes, and then, put into the distilled sterilized water for five min. for three times in the clean bench. Then, the surface-sterilized ovaries were placed and planted on 1/2 MS medium supplemented with 3.0 (w/v)% sucrose, 0.2 (w/v)% gelrite, 0.2mg/l IAA and adjusted at pH 5.8 (Murashige and Skoog 1962).

DNA-extraction, amplification and sequencing Total genomic DNA’s of the cultured-materials were extracted and isolated from some pieces of leaflets or plantlets by the CTAB method (Doyle and Doyle 1987). They were, then, incubated in the waterbath at 65°C for 30 min. During this incubation, they were shaken well at an interval of every 10 min. Then, they were added 500µl of CIA (chloroform:isoamylalcohol=24:1) and messed up for 10 min. Then, they were centrifuged at 15,000 rpm at room temperature for 10 min. Then, the supernatant fluid of ca 450µl was transferred to anoter test-tube. Then, 1µl of Rnase (10µg/ml) were added and incubated at 37°C for 1h. They were, then, added again 450µl of CIA and gently mixed for 5 min before they were centrifuged at 15,000 rpm at room temperature for 10 min, and the supernatant ca 400µl was taken and transferred to new test-tube. Four hundreds µl isopropanol was added and mixed well and gently placed for five minutes. It was centrifuged at 10,000 rpm for 10 min, and its supernatant ca 400 µl isopropanol and left gently for five minutes and the supernatant was removed. Leftover pellet was added 1 ml of 70% ethanol stirred up well and centrifuged at 15,000 rpm for 5 min. Then, the supernatant was thrown away and the test-tube was turned upside-down for 15 min to get naturally drying. Then, 50µl 1X TE liquid was added for 4°C storage, or if long-term storage at -20°C. Moreover, concentrations of extracted DNA was measured by...
spectrophotometer, and adjusted and diluted down to 50 ng/µl.

RAPD analysis DNA extracted by CTAB method was used for RAPD analysis. The composition of PCR reagents were 2.8µl SDW, 5.0µl 2X buffer (TOYOBO), 1.0µl dNTPs (TOYOBO), 10µM primer 0.6µl (TOYOBO), 0.1µl KODFX (TOYOBO), DNA0.5µl, total 10µl. Total 20 primers were used in the random Primer Series KIT A (Operon). The condition of the earliest degeneration of PCR at 94°C for 1 min, annealing was at 40°C for 2 min, extension at 68°C for 2 min, made total for 45 cycles and stored at 4°C. PCR amplification was used by a thermalcycler (Gene Amp PCR System 9700, PE Applied Biosystems).

Electrophoresis PCR amplified products were determined by electrophoresis. Gel used for the electrophoresis was used and 200 bp DNA Ladder as the marker and 1.5 or 2.0% agarose gel (Takara: L037654) and DNA sized marker 200 bp DNA ladder 2µl. Mupid-2 plus (Advance) as an electrophoresis equipment was used with electrophoresis tub TAE buffer filled out before 100 V electrified for 30 min., and then, the gel was put and shaken in ethidium bromide for 35 min in dark and stained and made electrophoresis again for 5 min.. Photography was made undr UV exposure by Printgraph AE-6933FXCF-U (Atto Co.).

Hybridization approval by RAPD and morphological comparisons The hybrids obtained between *Glebionis coronaria* and *Leucanthemum vulgare* were approved by the paternal band restricted by RAPD primer OPA20. Thus, the RAPD primer OPA20 could identify the hybrid strain of *Glebionis coronaria* X *Leucanthemum vulgare* separated from the parentages.

Results and Discussion

Since the members of the tribe Anthemideae, the family Asteraceae commonly have the protandrous flower, all of the pollen grains were easily removed before any pollination onto the stigmatoid tissues by the air spray or hitting shocks. Then, hybridizing pollinations could be made easily in the morning in the sunny day.

Flowering season of *Glebionis coronaria* in Japan is in the spring time and that in *G. segetum* in the summer to autumn seasons. Flowering season of *Leucanthemum vulgare* is in the spring time. Four cross combinations among the three species were cross-pollinated to make hybridization and were, then, isolated with the anti-pollination bags. Within eight to 15 days after the last hand pollination, the inflorescences pollinated were harvested. Their ovaries were isolated under a stereoscopic microscope and were sterilized in 10% sodium hypochlorite solution for ten minutes, and then, put into the distilled sterilized water for five min. for three times in the clean bench. Then, the surface-sterilized ovaries were placed and planted on 1/2 MS medium supplemented with 3.0 (w/v)% sucrose, 0.2 (w/v)% gelrite, 0.2mg/l IAA and adjusted at pH 5.8 (Murashige and Skoog 1962).

Growing plantlets were subcultured in 1/2 MS medium (Murashige and Skoog 1962) supplemented with 1.5 (w/v)% sucrose, 0.3 (w/v)% gelrite and no growth-substance.

Total genomic DNA’s of the cultured-materials were extracted and isolated from some pieces of leaflets or plantlets by the CTAB method (Doyle and Doyle 1987). They were, then, incubated in the waterbath at 65°C for 30 min. During this incubation, they were shaken well at an interval of every 10 min. Then, they were added 500µl of CIA (chloroform:isoamylalcohol=24:1) and messed up for 10 min. Then, they were centrifuged at 15,000 rpm at room temperature for 10 min. Then, the supernatant fluid of ca 450µl was transferred to anot test-tube. Then, 1µl of RNase (10µg/ml) were added and incubated at 37°C for 1h. They were, then, added again 450µl of CIA and gently mixed for 5 min before they were centrifuged at 15,000 rpm at room temperature for 10 min, and the supernatant ca 400µl was taken and transferred to new test-tube. Four hundreds µl isopropanol was added and mixed well and gently placed for five minutes. It was centrifuged at 10,000 rpm for 10 min, and its supernatant ca 400µl isopropanol and left gently for five minutes and the supernatant was removed. Leftover pellet was added 1ml of 70% ethanol stirred up well and centrifuged at 15,000 rpm for 5 min. Then, the supernatant was thrown away and the test-tube was turned upside-down for 15 min to get naturally drying. Then, 50µl 1X TE liquid was added for 4 °C storage, or if long-term storage at -20°C. Moreover, concentrations of extracted DNA was measured by spectrophotometer, and adjusted and diluted down to 50 ng/µl.

Table 1. Artificial cross hybridizations and ovule culture between *Glebionis coronaria* and *Leucanthemum vulgare*

<table>
<thead>
<tr>
<th>Combinations of cross hybridization</th>
<th>Number of Ovules sown</th>
<th>Number of ovules germinated</th>
<th>Number of plants grown from ovules</th>
<th>Germination frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glebionis coronaria ♀ X Glebionis segetum ♂</td>
<td>32</td>
<td>8</td>
<td>0</td>
<td>25.0</td>
</tr>
<tr>
<td>Glebionis coronaria ♀ X Leucanthemum vulgare ♂</td>
<td>107</td>
<td>38</td>
<td>16</td>
<td>35.5</td>
</tr>
<tr>
<td>Leucanthemum vulgare ♀ X Glebionis coronaria ♂</td>
<td>89</td>
<td>27</td>
<td>9</td>
<td>30.0</td>
</tr>
<tr>
<td>Glebionis segetum ♀ X Leucanthemum vulgare ♂</td>
<td>41</td>
<td>9</td>
<td>0</td>
<td>21.9</td>
</tr>
</tbody>
</table>
RAPD analysis

DNA extracted by CTAB method was used for RAPD analysis. The composition of PCR reagents were 2.8 µl SDW, 5.0 µl 2X buffer (TOYOBO), 1.0 µl dNTPs (TOYOBO), 10 µM primer 0.6 µl (TOYOBO), 0.1 µl KODFX (TOYOBO, DNA0.5 µl, total 10 µl). Total 20 primers used were among the random Primer Series KIT A (Operon). The condition of the earliest degeneration of PCR at 94°C for 1 min, annealing was at 40°C for 2 min, extension at 68°C for 2 min, made total for 45 cycles and stored at 4°C. PCR amplification was used by a thermalcycler (Gene Amp PCR System 9700, PE Applied Biosystems).

Electrophoresis

PCR amplified products were determined by electrophoresis. Gel used for the electrophoresis was used and 200 bp DNA Ladder as the marker and 1.5 or 2.0% agarose gel (Takara: L03 TAKARA 50039). PCR product added loading buffer (Sigma; G-7654) and DNA sized marker 200 bpDNA ladder 2µl. Mupid-2 plus (Advance) as an electrophoresis equipment was used with electrophoresis tub TAE buffer filled out before 100 V electrified for 30 min., and then, the gel was put and shaken in ethidium bromide for 35 min in dark and stained and made electrophoresis again for 5 min.. Photography was made undr UV exposure by Printgraph AE-6933FXCF-U (Atto Co.).

Hybridization approval by RAPD and morphological comparisons

The hybrids obtained between *Glebionis coronaria* and *Leucanthemum vulgare* were approved by the paternal band restricted by RAPD primer OPA20. Thus, the RAPD primer OPA20 could identify the hybrid strain of *Glebionis coronaria* X *Leucanthemum vulgare* separated from the parentages.

Literature Cited

Fig. 1. Comparisons of band variability in RAPD primer OPA20. Easily Ladder, blank, *Glebionis coronaria*, *Leucanthemum vulgare*. Thus, the RAPD primer OPA20 could identify the hybrid strain of *Glebionis coronaria*, *Leucanthemum vulgare*, a hybrid between *Leucanthemum vulgare* and *Glebionis coronaria*.