拘束条件を満たす初期状態の集合

アイ君とサイ君、たまには（？）研究の意図を、ということで京都の三十三間堂に観光やってきました。

アイ「毎年、成人式の頃にここで弓道の大会があるんだよね？」

サイ「そうさ、正月に新成人が矢を射るのが京の冬の風物詩なさ、通し矢といって、昔は建物の縁側の廊下を使ってやっていたんだ。縁側の南の端から北の端に掲げられた的まで、三十三間（約120m）もある堂に矢を通したら、端っこに立ってここ2mもある弓を使って射ったららしいよ。」

アイ「へえ、よく見てみると縁側の柱の南側部分は矢が刺さらないように鉄板で覆ってあるね。」

サイ「なかなか目ざといね。それと、南端から30m位の天井の辺りもよく観てみなよ、矢が刺さってるでしょ？実際、あの辺りの天井に刺さって失敗するのが多かったりなんだね。というのも、120mも先の的を狙うとすると、よほど弓を引く力が強くない限り、ある程度上方に角度をつけて狙わないと的まで届かないよね。だからといって、あんまり角度をつけすぎると今度は天井に刺さっちゃうよ…」

アイ「射った矢がどこにも当たらず、的まで到達する必要があるんだよね。ということは矢を射た高さと初速、発射角なんかで能動的に成功するかどうかが決まっちゃうのかな。」

サイ「そうだそう、他の要因がいわゆるわけじゃないけど、矢の初期状態ではほぼ決まるといっていいね。ところでアイ君、制限の分野で知られている最大出力許容集合成って言うの知ってるかい？」

アイ「うーん、聞いたことがあるようなな…それが仕事と何か関係あるの？」

サイ「最大出力許容集合っていうのは、出力に拘束条件をもつ閉ループシステムに対して考えられているもので、拘束条件が満たされるような初期状態の集合のことなんだ（第1図）。もうというと、初期状態が最大出力許容集合に含まれるならば、その後、システムの出力がすっと拘束条件の許容範囲内にいることが保証されるんだ。ちなみにここでの出力は、観測される出力じゃないって、拘束条件が課される出力って意味ね。」

アイ「じゃあ、矢の初期状態のうち、さっき言った天井や壁に当たらないでいいうのが拘束条件で、この条件を満たしたうえでのに当たるような状態の集合のことになるのかな。」

サイ「うーん、僕もそれで頭に思い浮かんだんだけど…」


第1図 最大出力許容集合の例：最大出力許容集合の中から始まるすべての軌道は、拘束条件を満たすことが保証されている。最大出力許容集合の外から始まる軌道は、はじめのうち拘束条件を満たしたとしても、途中で拘束条件を破ってしまう。

でも実はちょっと違うね。最大出力許容集合の場合、拘束条件を破らないが、その初期状態から続く全時刻において保持されないということだ。

アイ「なるんだ、違うんだね。つまり、通し矢の例だと時間が有限って終わるから違うところね、しかし、そんなに都合よく、うまくいく初期状態だけの集合を計算できるの？」

サイ「それが計算できる場合もあるんだよ。まず離散時間の離散システムの場合を考えよう。この場合、拘束条件を満たす状態の集合を元に、nステップ先まで拘束が満たされる初期状態の集合っていうのが計算できるんだ。」

アイ「ふーん。でも拘束条件は無限に先まで保持されないといけないのじゃないし、それだと計算も無限回行う必要があって、結局できないんじゃない？」

サイ「ここでトリックがあるのさ。ある初期状態がn+1ステップ先までの拘束を満たすならば、当然、nステップ先までの拘束は満たすよね。ということは、ステップを進めて集合を計算していくうちにどんどん集合は小さくなっていくはずなんだ。」

アイ「うん、つまり小さくなっていく過程でどこかに収束するとして、その収束先がわからないといけないよね。」

サイ「しかし、それが有限回で収束することがあるんだよ。仮にn+1ステップ先まで拘束を満たす状態
の集合が、n ステップ先まで満たす集合と等しかったとする。これは、n ステップ先までの拘束条件が満たされるなら n+1 ステップ先での拘束条件が満たされると意味する。ということは、n+2 ステップ先の拘束条件が満たされるためにには？

アイ 「n+1 ステップ先での拘束が満たされれば十分だから・もはや計算する必要がないのかない。」

サ イ 「そうだから、これなら有限方のステップで最大出力許容集合を求められるでしょう。」

アイ 「でも、必ずしも有限囲で収束するわけではないんだよね？」

サ イ 「残念ながらね、有限囲で求まるためのひとつのは、条件が不十分条件[1]として、システムが安定かつ可観測で拘束条件の許容範囲が有限かつ 0 を含むという条件が知られているよ。」

アイ 「実際の例でもとれば満たされそうですね。」

アイ 「そうかもね、あと、仮に有限囲で求められなかったとしても、ちょっとだけ保守的に集合を計算することで、有限囲で停止させることもできるんだ。」

アイ 「なるほど、でもこれまでの話で離散時間システムの場合だよね。連続時間システムの場合は？」

サ イ 「連続時間の場合は残念ながら近似しか求められないんだけ、基本的に、離散時間システムは連続時間システムの軌道をサンプリング時点でとらえるものだから、連続時間システムの最大出力許容集合は、対応する離散時間システムのものより狭くなるよ。」

アイ 「サンプリング点間の応答も拘束条件を守る必要があるんよね。」

サ イ 「ただ、サンプリングタイムを短くすることで、離散時間システムで求めたものがほとんど連続時間のものに近づくよ。基本的にはそれと近似的に計算できるんだ。ただし、サンプリングタイムを短くすると、計算増大が増大するのでそれは一長一短だね。」

アイ 「拘束条件を満たすような初期状態を明らかにするっていうのが重要だというのわかりんだけ……

アイ 「もちろん、拘束条件を破らずに制御するために、位置決め系でオーバーシュートを起こすないとき、エネルギーを起こさないための道具として使えるんだ。」

アイ 「でも仮に状態を観測して拘束条件が満たせないとか、対処法がないんじゃないの？」

サ イ 「もしもロバスト制御や非線形システムの制御がこれなら使えるさ、ところでのアイ君、話を戻すけど、何卒大失敬で知っててね？」

アイ 「うん、聞いたことがあるようなね……それはこれまでの話と何か関係あるの？」

サ イ 「実はあまりないけどね…はじめに言った通り矢っ飛ばという競技の中で、最も人気あったのは大矢数と、一昼夜でどれだけ多くの矢を矢弓に射するか競うものだったんだ。それを真似して江戸時代に流行ったのが俳諧大矢数で、井原西鶴は一月何と二万五千以上の句を詠んだとか…」

アイ 「換りもそれくらいのベースで研究のアイディアが浮かんでいないだけね。」

サ イ 「そりゃ、ボール・エルデシュも真っ青だ…。

参考文献


* 京都大学 大学院 情報学研究科

鈴木：拘束条件を満たす初期状態の集合

523