密密度関数—非線形システムの安定解析の新たなアプローチ

増瀬 泉*

1. はじめに

非線形システムの安定性を扱うための最も強力な方法の一つがLyapunovの方法である[3]など。非線形システムの絶対値を実際に調べることなく、ある関数（すなわち Lyapunov関数）の存在を示すことで解軌道の安定性や平衡点への収束を保証することができる。一方近年、解軌道の収束を保証する関数の存在により保証する新しい方法がRantzer[10]によって提案された。Lyapunovの方法では解軌道に沿った関数の値の単調性により解軌道の収束が示されるのに対し、Rantzerの方法においては「密度関数」とよばれる関数により与えられる状態空間の部分集合の体積（ルベーグ測度）の解軌道に沿った時間的変化を考え、これを解軌道の収束性に結びつけている。安定解析の考え方としては新たなものであり、非線形システムの解析の新たな切り口となることが期待される。最近では密度関数に関する研究も少しずつではあるが増えてきている状況である。

本稿では、まずこの新しい安定解析の方法によってあるべく平易に述べ、その後の理論の発展におけるいくつかの活用を紹介する。

記号など

|||はユークリッドノルムを表す（なお本稿の議論は本質的にはノルムの選択によらない）。B_r(x_0)で開球\{x \in R^n \mid \|x-x_0\|<r\}を表す。閉球は\bar{B}_r(x_0)と記す。また本稿では、「ほとんどすべての\(x \in D \subset R^n\)で命題P(x)が成り立つ」とは、命題P(x)が成り立たないxの集合が零集合をなすこと、すなわち集合\(\{x \in D: P(x)\text{が偽}\}\)のルベーグ測度が零であることを意味する[16]。

2. 準備

まず、微分方程式の解の流れに沿った集合の測度の変化に関する事項をまとめておこう。つぎのシステムを考える。

\[\dot{x} = f(x), \quad x \in R^n\] (1)

以下を仮定する。

\((F1)\) \(f \in C^1(R^n, R^n)\)

・ 広島大学大学院工学研究科

Key Words: nonlinear systems, stability analysis, density functions, almost everywhere stability.

(F2) 任意の初期値\(x_0 \in R^n\)に対し、(1)式は\(t \in (-\infty, \infty)\)

で定義される一意解\(x(t) = \phi(t;x_0)\)をもつ

(F3) \(x = 0\)は平衡点

つぎに、\(R^n\)のある開集合\(D\)の上で定義される関数\(\rho\in C^1(D, R)\)に対して、\(D\)の部分集合\(A\)上での積分

\[\int_A \rho(x)dx\] (2)

を考える。上式は\(\rho(x)\)を密度とした一つの測度を与えている。本稿ではこれを「\(\rho\)測度」と呼んでおく。またこの意味で\(\rho(x)\)を「密度関数」と呼ぶ。状態空間の点が微分方程式 (1) に沿って動くこと、集合\(A\)は集合\(\phi(t;A) = \{\phi(t;x): x \in A\}\)へと動いていく、このとき集合\(\phi(t;A)\)の\(\rho\)測度の値は、\(\phi(t;x) \subset D, \forall t \in [0, t]\)と仮定して

\[\int_{\phi(t;A)} \rho(z)dz = \int_A \rho(\phi(t;x)) \left| \frac{\partial \phi(t;x)}{\partial x} \right| dx\] (3)

と表される。さて、上式の積分の時間微分を考えよう。まず

\[\frac{\partial}{\partial t} \left(\frac{\partial \phi(t;x)}{\partial x} \right) = [\nabla \cdot f](\phi(t;x)) \left| \frac{\partial \phi(t;x)}{\partial x} \right|\] (4)

である。ここで\(\nabla \cdot f\)は、\(f = \left[f_1 \cdots f_n \right]^T\)に対して

\[\nabla \cdot f = \sum_{i=1}^n \frac{\partial f_i}{\partial x_i}\] (5)

と定義される。(4) 式を用いると

\[\frac{d}{dt} \left\{ \phi(t;x) \left| \frac{\partial \phi(t;x)}{\partial x} \right| \right\} = [\nabla \cdot (f \rho)](\phi(t;x)) \left| \frac{\partial \phi(t;x)}{\partial x} \right|\] (6)

となる。これを (3) 式に適用すると、積分の変数変換を経て次式を得る。

\[\int_{\phi(t;A)} \rho(z)dz = \int_A \rho(x)dx\]

\[= \int_0^t \int_{\phi(t;A)} [\nabla \cdot (f \rho)](z)dz \text{d}t\] (7)

最後に次式を注意しておく。
3. 解軌道の収束

システム (1) の解軌道の平衡点 \(x = 0 \) への収束が、密度関数によっていかに示されるかを見ていきたい。

3.1 簡単な場合の導出

ここでは議論を簡略にするため、必要に応じて仮定をおきながら話を進めめる。まず、(1) 式の \(f(x) \) は前章の仮定 (F1)–(F3) を満たすものとする。関数 \(\rho \in C^1(\mathbb{R}^n \setminus \{0\}, \mathbb{R}) \) として

\[
\frac{\partial \phi(t;x)}{\partial x} > 0, \quad \forall t \in (-\infty, \infty), \quad \forall x \in \mathbb{R}^n
\]

が定義される。そこで、条件 (R2) は

(R2') 仮定の任意の近傍 \(N_0 \) について、(8) 式の積分が有限であることを持ってよい。いま、\(\rho(x) \) が

(R3) ほとんどすべての \(x \in \mathbb{R}^n \setminus \{0\} \) で

\[
|\nabla \cdot (f\rho)(x)| > 0
\]

を満たすとし、この条件から何が導かれるかを考えよう。\(r > 0 \) に対して \(D = \mathbb{R}^n \setminus B_r(0) \) とおく。まず、開集合 \(A \subset D \) を任意にとり、ある \(T > 0 \) について \(\phi(t;A) \subset D, \) \(t \in [0, T] \) となるが、この時間区間において仮定 (R2) により (3) 式の積分は有界となり、さらに仮定 (R3) と (7) 式よりこの積分は単調增加となる。

さて、解軌道の原点への収束を示すために、Rantzer[10] は仮定 (R2) の条件を不変であるという仮定を仮定する。解軌道が収束しない初期値集合に着目した。そのためには

\[
Z = \{x \in \mathbb{R}^n : \limsup_{t \to \infty} \|\phi(t;x)\| > r\}
\]

を定義し、Z のルーベーグ測度がどうなるかを考察したのである。簡単のために

(F4) システム (1) の原点は安定であることが仮定しておく。以下の仮定を用いない方法については次節で述べる。集合 \(Z \) は、時間 \(T > 0 \) を任意に（長く）持つとき、その後のある時刻 \(T > T \) で解軌道が原点から距離 \(r \) より離れた場所まで進んでしまう解軌道 (\(|\phi(t;x)| > r\) の初期値の集合である。また \(Z \) は不変集である。すなわち,

\[
\phi(t;Z) = Z, \quad \forall t \in (-\infty, \infty)
\]

さらに仮定 (F4) より、集合 \(Z \) に含まれる要素のノルムには正の下限がある。すなわち\(\varepsilon > 0 \) について

\[
Z \subset D := \mathbb{R}^n \setminus B_r(0)
\]

となる。条件 (R2)（もしくはこれと等価な (R2')）より、

\[
0 = \int_{\phi(t;Z)} \rho(z)dz - \int_Z \rho(x)dx
\]

が得られる。以上の式より、上式は以下の定義において \(Z \) のルーベーグ測度が零でなければならない。よって、ほとんどすべての \(x \in \mathbb{R}^n \) について

\[
\limsup_{t \to \infty} \|\phi(t;x)\| \leq r
\]

となる。この結論は任意の \(r > 0 \) について成り立つから、

【結論 1】 仮定 (F1)–(F4) および (R1)–(R3) が成り立つとする、このときほとんどすべての初期値 \(x \in \mathbb{R}^n \) に対して解軌道 \(\phi(t;x) \) は \(t \to \infty \) で原点に収束する。
このシステムは漸近安定性定理（0,0）と不安定安定性点（2,0）をもつ。$z(t) = (z_1, z_2)$を初期条件から出発する解が原点に収束し、$z(t) = (2,2)$, $c > 2$なる初期値をもつ解においてはz_1が$+\infty$に発散する。この例では、$\rho(x) = |x|^{-1}$が密度関数となる。

(注意 1) 集合の冽を考えることにより、「ほとんどすべての初期値について解が$x = 0$に収束する」という概念が生じる。（Lyapunov の意味）漸近安定性とは異なり、初期値が十分原点に近ければ解軌道自体も原点近傍にとどまるという性質（安定性）は課せられておらず、また原点に収束しない点の集合の存在を、集合のルベーグ度が零となる範囲で許している。たとえば索川を受けて回転する振子はこの例である（上死点を静止状態の初期値のみが下死点に収束しない）。

(注意 2) 議論を平面にするために、命題 1 は定理 1 よりも多く仮定を用いている。また、両者の可積分性の仮定（それぞれ (8), (13) 式）において被積分関数が異なっていることに注意する。任意の初期値に対して解がすべての t で存在することが保証されている場合に定理 1 のようにに自身の可積分性を仮定すればよいが、解軌道の集合の存在をあらかじめ仮定しない定理 1 の場合には (13) 式を仮定する必要がある。

さて、定理 1 では原点の安定性を仮定せずに結果を導いている。一方、本章の前半の議論では、不集団 Z が原点のある間断点を含まないことを使う。したがって、この Z をそのまま用いて原点の安定性を仮定せずに証明することはできない。したがってこの場合、集合空間における仮の結果 [10] が役立つ。

【定理 2】 (X, A, μ) を集合 X, 可測集合族 $\mathcal{A} \subset 2^X$ および測度 μ からなる測度空間とする。有限測度 μ(P) < ∞をもつ可測集合 P ⊂ X および写像 $T: X \rightarrow X$ として、任意の可測集合 $Y \subset X$について

$$\mu(T^{-1}(Y)) \leq \mu(Y)$$

(14)

を満たすものを考える。集合 \mathcal{Z} を、無限に多く の整数 $k > 0$ について $T^k(x) \in P$ となる点 $x \in P$ の集合とする。このとき

$$\mu(T^{-1}(\mathcal{Z})) = \mu(\mathcal{Z})$$

(15)

が成り立つ。

さて、$\phi(t;x)$ が $t \in (-\infty, \infty)$ で定義されることを再び仮定 1 において

- $X = \mathbb{R}^n$, $\mu(Y) = \int_Y \rho(x)dx$
- $P = \{x \in \mathbb{R}^n : \|x\| > r\}$
- $T(x) = \phi(1;x)$

と定義する。そうすると、$\mu(P)$ は有限解、$\mathcal{Z} = \{x \in P\}$ のうち無限に多くの点に対して $T^k(x) \in P$ となる点の集合である。さらに定理 1 の仮定のもとで (14) 式が成り立つから、定理 2 より (15) 式が導かれる。定理 3 を適用することによって、ほとんどすべての $x \in \mathbb{R}^n$ について

$$\limsup_{k \to \infty} \|\phi(k;x)\| \leq r$$

(ただしr は整数)

を導く。以上を加え、$\lim_{t \to \infty} \phi(t;x) = 0$ （t 実数）を示し、解軌道の存在に関する仮定を外すことで証明を完遂するが、ここでは省略する。

3.3 まとめ

以上で述べたように、定理 1 は本質的に仮の二つの事実から成り立っている。

- 密度関数の条件 $\nabla \cdot (f(x)) > 0$ は集合の ρ-測度の解軌道に沿った単調性を導く、その結果、解軌道に沿って ρ-測度が非零かつ一定となる集合が存在しない。
- 一方解軌道に関して、
 - 定理 1 (3.1 節) は不変集合であり、ρ-測度は一定。
 - 定理 1 (3.2 節) は（あるいは他の測度の単調性から）定理 2 の仮定を満たし、ρ-測度は一定。

よって集合 Z または \mathcal{Z} のルベーグ度は零であることか示され、これらの定義からほとんどのすべての解軌道の原点への収束が導かれる。このように、密度関数による定理 1 では、解軌道の収束を議論するために、それに対して影の存在である「収束しない解軌道」の非存在性を示すという方法が用いられているのである。

仮の末では密度関数に関するいくつかのトピックにいて述べる。本章の最後に、線形システム $\dot{z} = Az$ の場合について述べておく、Tz で正方行列 A のトレースを表すと、$\nabla \cdot (Az) = TrA$ である。A がフルビット行列であるとき、

$$A^TP + PA - \alpha^{-1}TrA < 0$$

(16)

を満たす正定対称行列 P および正のスカラー α が存在する（α を十分大きくとればよい）。$\rho(x) = (x^TPx)^{-\alpha}$ とおくと、この ρ はシステム $\dot{z} = Ax$ に対する密度関数となる。なお可積分性の条件は $\alpha \geq 1$ で保証される。

4. 理論の発展と応用

4.1 正不変性

非線形システムでは大域的な漸近安定性や漸近安定化などを期待できないケースも多い。そこで、吸引領域やその部分集合である正不変集合を求めることが重要になる。参考文献 [14] では、「safe control」の文脈において、解軌道が望ましくない領域に到達しないことを保証する条件が示された。

【定理 3】 (1) 式において $f \in C^1(R^n, R^n)$ とし、開集合 X_0 と X_o を開集合 $X \subset R^n$ の部分集合とする。つ

\footnote{これにより積分の条件は (R2) で置き換えられる。}
つきを満たす関数 \(\rho \in C^1(\mathbb{R}^n, \mathbb{R}) \) が存在するとする。

\[
\begin{align*}
\nabla \cdot (f(x)) &\geq 0, \quad \forall x \in X \\
\rho(x) &> 0, \quad \forall x \in X_0 \\
\rho(x) &\leq 0, \quad \forall x \in X_n
\end{align*}
\]

このとき、(1) 式の解 \(x(t) \) であって、\(x(0) \in X_0 \) ある \(T > 0 \) について \(x(T) \in X_n \) かつすべての \(t \in [0,T] \) について \(x(t) \in X \) であるものは存在しない。

さらに、正不変性と解軌道の収束を合わせた結果はつきのようにする [5,4].

【定理 4】 \(S \subset \mathbb{R}^n \) を原点を含む閉集合とし、つきを満たす密度関数が存在するものとする。

(i) ほとんどすべての \(x \in S \setminus \{0\} \) において

\[
\rho(x) > 0, \quad \nabla \cdot (f(x)) > 0
\]

(ii) \(\lim_{x \to \partial S} \rho(x) = 0 \)

(iii) つきのいずれかの条件が成り立つ。

(a) すべての \(x \in S \setminus \{0\} \) で \(\rho(x) > 0 \)
(b) すべての \(x \in S \setminus \{0\} \) で \(\nabla \cdot (f(x)) > 0 \)

このとき \(S \) は正不変集合となる。また、原点のある近傍 \(N_0 \) について積分 \(\int_{\partial S \cap N_0} (1+\|f\|)\rho \|x\| dx \) が有限であるならば、ほとんどのすべての \(x \in S \) に対してシステム (1) の解 \(x(t) \in [0,\infty) \) で定義され、\(t \to \infty \) で原点に収束する 1).

【例題 2】 つきのシステムを考える 2).

\[
\dot{x} = \begin{bmatrix} 2x_1^2x_2 - x_1 \\ -x_2 \end{bmatrix}
\]

原点の吸収領域は \(S = \{ x \in \mathbb{R}^2 : x_1^2x_2 < 1 \} \) である。定理 4 を満たす密度関数の一つが \(\rho(x) = (1-x_1^2x_2)/(x_1^2+x_2^2) \) で与えられる。実際、\(x_1^2x_2 < 1 \) かつ \(|x_1| \geq 1, \quad |x_2| \geq 1 \) のとき \((1+\|f\|)\rho \|x\| \leq (1+\sqrt{2})/(x_1^2+x_2^2) \) であり、\(S \setminus \{ x : \max \{ |x_1| < 1 \} \} \) で \((1+\|f\|)\rho \|x\| \) は可積分である。また

\[
\nabla \cdot (f(x)) = \frac{2(1-x_1^2x_2^2)(x_1^2+x_2^2+x_1^2x_2^2+5x_1^2x_2^2)}{(x_1^2+x_2^2)^2}
\]

となり、定理 4 の条件を満たしている。 \(\rho(x) = (1-x_1^2x_2)/(x_1^2+x_2^2) \) を第 1 図、第 2 図に示す。これらの関数はいずれも \(x = 0 \) で \(\infty \) となるが、図ではある高さで打ち切って描いている。

【定理 3】 のように集合 \(X \) で密度関数が存在するとすれば、任意の \(A \subset X_0 \) に対して \(\int_A \rho(x) \|x\| dx > 0 \) である。もしある時刻 \(t \) で \(\rho(t) \in X_0 \) となる \(x \in X_0 \) が存在すれば、\(x \in A \subset X_0 \) かつ \(\phi(t;A) \subset X_0 \) なる \(A \) を取ることができて \(\int_{\phi(t;A)} \rho(x) \|x\| dx \leq 0 \) である。これらと (7) 式および \(\nabla \cdot (f(x)) \) の \(0 \) から矛盾が導かれる。

一方定理 4 では \(S \) の外では密度関数が定義されていないが、(6) 式により

1. 積分の条件は、\(S \) が有界なら \(N_0 = S \) と取ることで自動的に成り立つ。
2. 参考文献 [2] の例をもとにしている。
とする。また $A := \partial f / \partial x|_{x=0}$ はフルビッセ行列であるとする。このとき原点のある有界な近傍を除いた領域で可積分である。とくにすべての $x \in \mathbb{R}^n \setminus \{0\}$ について $\nabla \cdot f \rho(x) > 0$ を満たす非負の関数 $\rho \in C^1(\mathbb{R}^n \setminus \{0\}, \mathbb{R})$ が存在する。1

【定理 7】（参考文献 [5]）システム (1) において $f \in C^2(\mathbb{R}^n, \mathbb{R}^n)$ とし、原点は局所安定な平衡点であるとする。S を原点を内点に含む正不変集合とする。このとき S から原点のある有界の近傍を除いた領域で可積分である。$\rho(x) > 0, \nabla \cdot f \rho(x) > 0, x \in S \setminus \{0\}$ かつ $x \mapsto \partial S$ のとき $\rho(x) \rightarrow 0, \partial \rho(x) / \partial x \rightarrow 0$ なる関数 $\rho \in C^1(\mathbb{R}^n \setminus \{0\}, \mathbb{R})$ が存在する。

密度関数の構成の略を述べておこう。定理 5, 定理 7において、密度関数は、原理的には

$$\rho(x) = \int_0^\infty \lambda(\phi(t;x)) \left| \frac{\partial \phi(t;x)}{\partial x} \right| dt \quad (17)$$

によって与えられる。ここで $\lambda(x) = S \setminus \{0\}$ は (定理 5 では $S = \mathbb{R}^n$ とする) で定義される正値の関数である。 式 (17) では積分の収束が問題となるので、これらの定理の証明では、まず有界な定をもつ正値の関数列 $\lambda_i(x)$ に対して定の積分

$$\rho_i(x) = \int_0^1 \lambda_i(\phi(t;x)) \left| \frac{\partial \phi(t;x)}{\partial x} \right| dt$$

を考える。ここで $T_i \leq 0$ は $\phi(t;x)$ が $\lambda_i(x)$ の台に含まれる時刻の下限である。$\lambda_i(x)$ は、T_i が有限かつ $i \rightarrow \infty$ で $\lambda_i(x)$ の台が S 近づくように選び、そのうえで

$$\rho(x) = \sum_{i=1}^\infty c_i \rho_i(x)$$

により密度関数を構成する。ここで $c_i > 0$ は級の収束や積分可能性の条件を満たすように選べる。 $\lambda(x) = \sum_{i=1}^\infty c_i \lambda_i(x)$ とおくと $\nabla \cdot f \rho(x) = \lambda(x) > 0$ となる。

一方定理 6 では以下のような考えに基づいて密度関数を構成している。システム (1) において仮定 (F1)-(F3) が成り立ち、$A = \partial f(x) / \partial x|_{x=0}$ がフルビッセ行列であるとする。とすると原点は指数安定で、原点近傍で2次形式 Lyapunov 関数 $x^T P x$ が存在し、ある $\delta > 0$ について $P = \{ x \in \mathbb{R}^n : x^T P x < \delta \}$ はシステム $x = f(x)$ の正不変集合となる。また任意の $x \neq 0$ に対して解関数 $\phi(t;x)$ はこの正不変集合の表面 P_a に一点で交わるので、$\phi(x) \in \mathbb{R}^n \setminus \{0\}$ によってその時刻 $\tau(x)$ が定義できる。さて、$x \in \mathbb{R}^n$ から $y \in \mathbb{R}^n$ への変換

$$y = H(x) := e^{-\Lambda \tau(x)} \phi(\tau(x); x) \quad (18)$$

を考えよう。これは $\nabla \cdot H(x) / \partial x > 0$ を満たす離散同相である。x がシステム (1) の解軌道であるとき、(18) 式の y について $\dot{y} = Ay$ が成立立つ。すなわちシステム (1) の hypersurface が $\dot{y} = Ay$ の解軌道に一致で写像される。線形システムにおいては 4.3 節で述べたように $\rho(y) = (y^T P y)^{-\alpha}$ の形の密度関数が存在する。この密度関数をもとに

$$\rho(x) = \rho(H(x)) \left| \frac{\partial H(x)}{\partial x} \right|$$

を定義すると、これがシステム (1) において (R1)-(R3) を満たす密度関数となる。

4.3 状態フィードバック制御の設計

$$f \in C^1(\mathbb{R}^n, \mathbb{R}^n), g \in C^1(\mathbb{R}^n, \mathbb{R}^{n \times m})$$ とする。つぎの制御系

$$\dot{x} = f(x) + g(x) u, \quad x \in \mathbb{R}^n, u \in \mathbb{R}^m$$

に対する状態フィードバック制御則

$$u = \alpha(x)$$

の設計のために密度関数を用いることを考えよう。まず条件 (R1) と (R3) の不等式は

$$\rho(x) \geq 0, \quad \nabla \cdot (\{(f + gu)\})(x) \geq 0, \quad x \in \mathbb{R}^n \setminus \{0\}$$

となる。なお第二式の不等式はほとんどすべての x について厳密である必要があるが、ここではいったんおいておく。$\omega(x) = u(x) \rho(x)$ と定義すると、上式は

$$\rho(x) \geq 0, \quad \nabla \cdot (f \rho + g \omega)|x| \geq 0, \quad x \in \mathbb{R}^n \setminus \{0\} \quad (19)$$

となる。 (19) 式は未定の関数 ρ, ω をabout 関形式としている。したがって (19) 式を満たす (ρ, ω) の集合は凸集合となり、数値計算でこれらを探すうえで大きな利点となる。

参考文献 [8] は二乗和 [9] を用いてこれに対す KG 考えを提案している。以下では $f(x), g(x)$ を多項式としよう。まず、密度関数が前述の例題のように定義項で ∞ に発散する解関数であることにかかわらず、原点のままである正定値の多項式 $b(x)$ を固定して

$$\rho(x) = a(x) / b(x)^n, \quad \omega(x) = c(x) / b(x)^n$$

のようにおく。α は正のスカラーである。それである (19) 式はつぎの多項式の不等式

$$a \geq 0, \quad d := \nabla \cdot (fa + gc) - \alpha \frac{\partial b}{\partial x} (fa + gc) \geq 0, \quad x \in \mathbb{R}^n \setminus \{0\}$$

に書き換えられる。a, d を二乗和の範囲で、c を多項式の範囲で探索することにすれば、密度関数を求める問題が半正定値計画問題に帰着できることになる。ただし、$d \geq 0$ しか保証されず、また可積分性の条件、閉ループ系
の平衡点が原点になることは保証されていないことに注意する。しかしこれらを現実的な方法で満たしてやることとはさほど難しくないと思われる。

さらに定理 3 や定理 4 を用いると、状態および制御入力に課せられた制約を満たす状態フィードバック則の設計が可能になる。原点含む閉集合 S がある多項式 p によって \(\mathcal{D} = \{ x : p(x) > 0 \} \) と表されるものとする。また \(k_1, \ldots, k_m \) を正数とする。そうすると、集合 S が正不変集合となり、入力の各要素が \(u_i(x) \leq k_i \) を満たす制御器を定理 4 に基づいて求めるには、(19) 式を

\[
\rho(x) = 0, \quad x \in \mathcal{D} \\
\rho(x) \leq k_i \rho(x), \quad x \in \mathcal{D} \setminus \{ 0 \}
\]

と修正すればよい。制約のない場合と異なり、多項式の不等式或は等式で表される集合の上で正値又は零となる多項式を求める問題となるが、これらも二乗和で扱うことができる [9]。

5. おわりに

密度関数の方法はまだ生まれたばかりの理論であり、興味深い様々な課題があると思われる。今後その理論の発展に期待したい。

(2007年2月5日受付)

参考文献

著者略歴