ブローアップを用いた同次ベクトル場の解析

中村 文一*

1. はじめに

非線形システムの制御、特に局所的な安定化を行いたい場合には、線形化してから線形制御理論を適用する。Lyapunov関数を利用してシステムを安定化するという二つの方法がよく用いられる。しかし、時として同次システム[19]のように線形制御理論の枠内で解析が難しいシステムが存在し、そのようなシステムに対してはLyapunov関数を設計することもしばしば難しい問題となる。

本稿ではベクトル場に対するブローアップの一つである極ブローアップを紹介し、準同次ベクトル場と△同次ベクトル場の類似性について議論する。さらに、準同次ブローアップを準同次ブローアップの有効性と問題点を明らかにしたあと、筆者らが提案している△同次ベクトル場に対するEuler曲面を用いたブローアップと似た解析法を紹介する。

なお、本稿では多様体上の力学系理論を用いて微分方程式系の安定性解析を行う。多様体に関しては[17]、力学系理論に関しては[16]、微分方程式系の安定性については[1]を参考にしていただきたい。

2. ベクトル場の特異点

本稿では以下の有限次元の微分方程式系の解析を行う。

\[\dot{x} = f(x) \]

ただし、\(x \)は\(n \)次元ユークリッド空間の要素\(x \in \mathbb{R}^n \)であり、\(f(x) \)は\(x \)に関して2階微分可能\(C^2 \)級と言える。今後\(f(0) = 0 \)とし、\(x = 0 \)をベクトル場の特異点とよぶ。

また、\(x \)とこだわりなく微分方程式\((1) \)の右辺のベクトル場\(f(x) \)を以下のよう書くこととする。

\[f(x) = \sum_{i=1}^{n} f_i(x) \frac{\partial}{\partial x_i} \]

ただし、\(x_1, \ldots, x_n \)は適当な\(\mathbb{R}^n \)上の座標である。

さて、本稿では特異点近傍におけるベクトル場の解析問題を取り扱う。特異点近傍のみを取り扱うので通常\(f \)を以下のよう線形化して考えることが多い。

\[\dot{x} = \frac{\partial f}{\partial x} \bigg|_{x=0} x + O(||x||^2) \]

\[= Ax + O(||x||^2) \]

この行列\(A \)のすべての固有値の実部が\(0 \)でない場合、ベクトル場\(f \)は原点で双曲的であるといい、ベクトル場\(f \)の局所安定性は\(A \)の固有値に従う。しかし、行列\(A \)に実部が\(0 \)の固有値を含む場合はベクトル場\(f \)の解析が非常に難しくなる。このような、双曲的でない特異点を退化特異点とよぶ、退化特異点に対して一般的に安定性を保証するような方法は存在しないが、少し見通しを良くするような方法は存在する。それが、本稿で紹介するベクトル場のブローアップである。

3. 極ブローアップ

本章ではベクトル場のブローアップの考え方の基本となる極ブローアップを紹介しよう。極ブローアップは、ベクトル場を極値標表し、球面上の流れを解析することで退化特異点を解析する手法である。

具体的には、以下の極値標変換を考える。

\[\Phi: \mathbb{S}^{n-1} \times \mathbb{R} \to \mathbb{R}^n \]

\[(x_1, \ldots, x_n, r) \to (rx_1, \ldots, rx_n) \]

ここで、\(x_i \)は球面上の座標であり、\(\sum_{i=1}^{n} x_i^2 = 1 \)を満たす。また\(r \)は動径である。極ブローアップでは、球面\(\mathbb{S}^{n-1} \)上のベクトル場と特異点における動径\(r \)方向のベクトル場を解析する。もし球面上に特異点がなければ特異点は解消されることになり、特異点が双曲的であれば線形系
システム理論など従来の解析ツールを使って解が可能である。このように、ベクトル場の退化特異点を球面上の特異点解析に置き換える手法が極ブローアップである。もし球面上の特異点が双曲的でなければ、その退化特異点に対して再度極座標変換を行う。この連続的にブローヤップを行う手法は連続ブローアップとよばれている。

極ブローアップの正当性を示すために極座標表示の妥当性に関する定理を紹介しよう [14]。

【定理 1】 (1) を考える。ただし、f は C^1 級ベクトル場であるとする。ここで、次式で定義される極座標変換 Φ を考える。

$$
\Phi : S^n \times \mathbb{R} \rightarrow \mathbb{R}^n \\
(\vec{x}, r, \theta) \mapsto (r \vec{x}, r \theta)
$$

ただし、$\sum_{i=1}^{n+1} x_i^2 = 1$ とする。このとき、$q \in S^n \times \mathbb{R}$ に対して $\Phi_q(f(q)) = f(\Phi(q))$ となるような C^{1} 級ベクトル場 g が存在する。

このように、少なくとも 1 回微分可能であるようなベクトル場であれば超球面 $S^n \times \mathbb{R}$ 上に意味のある流れが構成される。球面で考えることができような意味をもつに収束していない変数 ϵ については定理を示唆する。

【例題 1】 以下のような xy-平面上のベクトル場を考えよう (第 1 図)。

$$
f(x) = (ax^2 - 2axy, x^2 - 2axy) (\mathbb{R}, \mathbb{R})
$$

このベクトル場を極ブローアップすると以下のようなベクトル場が得られる。

$$
f(r, \theta) = \eta_1 (r, \theta) \frac{\partial}{\partial \theta} + \eta_2 (r, \theta) \frac{\partial}{\partial \theta}
$$

ただし、

$$
\eta_1 (r, \theta) = \begin{cases}
\cos \theta \sin \theta (3 \sin \theta - 2a \cos \theta) & r \\
(\cos \theta - 2 \cos \theta \sin \theta - \cos \theta \sin \theta + \sin \theta)^2 & r
\end{cases}
$$

である。このままでを解析しきらい。そこで、ベクトル場を r で割ることによって得られる。円周 S^1 上の解軌跡が同じである以下のベクトル場を考えよう。

$$
f = \frac{1}{r} f
$$

f が同次ベクトル場であるときには、f を r^{k-1} で割ることにより球面上のベクトル場は r に依存しないこともまた知られている。なお、退化特異点周りでベクトル場を線形化してもあまり意味がないように、同次近似ベクトル場ない場合が存在する場合には十分注意しなければならない。この場合には、極ブローアップではなく方向ブローアップを用いて特異点を分歧することができる [14, 14]。

なお、例題では r で割ったベクトル場を考えたが、同次ベクトル場を解析する場合には r で割ったベクトル場ではなく、$r = 1$ で球面上のベクトル場と、球面上の特異点における r 方向のベクトル場を独立に解析しても全く問題は生じないことに注意しよう。

4. ブローアップを用いたベクトル場の異常性解析

前章で極ブローアップを紹介したが、本章ではブローアップを用いた異常性解析について考察する。ブローアップを用いて異常性の解析ができるのは球面上のベクトル場の解曲線が時刻 ω において 1 に収束する場合であり、特異点を解放してしまった場合には解析することはできない。ベクトル場の解曲線の时刻 ω における性質を議論するためにの極限集合という用語がよく用いられる。このため定義を紹介しておく。

【定義 1】 (ω 極限集合) 微分方程式系 $x = f(x)$ を考える。初期条件 $x(t_0) = x_0$ を満たす微分方程式の解を

第 1 図 ベクトル場の概形 第 2 図 極ブローアップ

$$
\theta = 0, \pi, 2\pi, 2, \tan^{-1}(2a/3)
$$

に特異点をもつ。このすべての特異点は双曲的であることにかかわらず、$a = 2$ のとき 2 図のような相関図を描くことができる。

例題では r で割り、$r = 0$ におけるベクトル場を考えた。これは、球面上のベクトル場が r に依存しないようにするためである。このような手法は近似局所ベクトル場を古典的な意味で同次、すなわち原点近傍で任意の変数に対しても以下のような条件をみたす実数 k が存在するときに有効な手法となる。

$$
f(\epsilon x) = \epsilon^k f(x)
$$

f が同次ベクトル場であるときには、f を r^{k-1} で割ることにより球面上のベクトル場は r に依存しないこともまた知られている。なお、退化特異点周りでベクトル場を線形化してもあまり意味がないように、同次近似ベクトル場ない場合が存在する場合には十分注意しなければならない。この場合には、極ブローアップではなく方向ブローアアップを用いて特異点を分歧することができる [14, 14]。

なお、例題では r で割ったベクトル場を考えたが、同次ベクトル場を解析する場合には r で割ったベクトル場ではなく、$r = 1$ で球面上のベクトル場と球面上の特異点における r 方向のベクトル場を独立に解析しても全く問題は生じないことに注意しよう。
\(\phi(t;x_0) \) を収束時、\(x \) の \(\omega \) 極限集 \(\omega(x) \) は次式により定義される。
\[
\omega(x) = \bigcup_{p>0} \{ \phi(t;x) | t > p \}
\]
(13)
ただし、\(p \) は凸包を意味する。

極プロアップに戻る平面 \(\mathbb{R}^{n-1} \) 上のベクトルを考えて、球面上の任意の点における \(\omega \) 極限集が 1 点であるとき、\(\omega \) 極限集は限定されず球面上のベクトルの特異点となる。この場合、球面上のすべての特異点において \(r \) 方向のベクトルが原点を向いているならば（\(r \leq 0 \) であるならば）微分方程式系は局所的に漸近安定である。

5. \(\Delta \)-同次ベクトル場と準同次ベクトル場

これまでに \(\Delta \)-同次ベクトル場の極プロアップを紹介し、古典的同次方程式系系の解析に有用であることを確認した。極プロアップは拡大され、準同次ベクトル場に対応できるものとなっている。準同次ベクトル場は非線形制御理論でよく用いられる \(\Delta \)-同次ベクトル場[19]にそうなり定義であるため、本章ではまとめて紹介しよう。

以下に \(\Delta \)-同次ベクトル場の定義である。準同次ベクトル場、\(\Delta \)-同次ベクトル場の解析において非常に重要である。

【定義 2】（拡大）固定された拡大指数 \(r = (r_1, r_2, \ldots, r_n) \) \(r_i > 0, 1 \leq i \leq n \) と任意の \(c \) に対して、次式で定義される同相写像 \(\Delta_c^\mu \) を拡大という。
\[
\Delta_c^\mu(x) = (e^{r_1}x_1, \ldots, e^{r_n}x_n)
\]
(14)
このとき、\(\Delta \)-同次システムは以下のように定義されるベクトル場である。

【定義 3】（\(\Delta \)-同次ベクトル場）次式が成立するとき、ベクトル場
\[
f(x) = (f_1(x), \ldots, f_n(x)) = \sum_{i=1}^{n} f_i(x) \frac{\partial}{\partial x_i}
\]
(15)
は拡大指数 \(r \) に関して \(k \in \mathbb{R} \) 次の \(\Delta \)-同次であるという。
\[
f(\Delta_c^\mu(x)) = e^{k \Delta_c^\mu} f(x)
\]
(16)
あるシステム \(x = f(x) \) はベクトル場 \(f(x) \) が \(\Delta \)-同次であるとき \(\Delta \)-同次システムという。
さらに、\(\Delta \)-同次ベクトル場の拡大指数を構成する \(r_i \) がすべて自然数であるとき同次ベクトル場とよばれる。すなわち、準同次ベクトル場とは以下のように定義されるベクトル場である。

【定義 4】（準同次ベクトル場） \(\Delta \)-同次ベクトル場 \(f \) の拡大指数 \(r = (r_1, \ldots, r_n) \) が \(r_i \in \mathbb{Z} \setminus \{0\} \) を満たし、\(f \) の同次次数で \(k \in \mathbb{Z} \) であるとする。このとき、ベクトル場 \(f \) は拡大指数 \(r \) に関して \(k + 1 \) 次の準同次であるという。定義からも明らかのように、準同次ベクトル場は \(\Delta \)-ベクトル場に少しだけ仮定を加えたベクトル場である。ただし、\(\Delta \)-同次と準同次では同次次数のとりかたが異なる点には十分注意する。数学と制御理論でなぜ異なる定義で研究が進みられたかは定かではないが、拡大指数 \(r \) を構成する \(r_i \) すべて整数であるという条件が非線形制御理論において厳しいうえではないかと考えられる。

今後の説明を簡単にするために \(\Delta \)-同次システムで用いられる用語の定義を紹介しておく。

【定義 5】（\(\Delta \)-同次関数）次式が成立するとき関数
\[
V: \mathbb{R}^n \to \mathbb{R}
\]
拡大指数 \(r \) に関して \(k \in \mathbb{R} \) 次の同次である。
\[
V(\Delta_c^\mu(x)) = e^{k V(x)}
\]
(17)

【定義 6】（同次ノルム）拡大指数 \(r \) に関して 1 次の \(\Delta \)-同次関数
\[
||x||_{(r,p)} = (|x_1|^r_1 + \cdots + |x_n|^r_n)^{1/p}
\]
(18)
を拡大 \(\Delta_c^\mu \) に関する同次ノルムという。

【定義 7】（Euler ベクトル場）次式的ベクトル場を拡大 \(\Delta_c^\mu \) に関する Euler ベクトル場とよぶ。
\[
\nu(x) = \sum_{i=1}^{n} r_i x_i \frac{\partial}{\partial x_i}
\]
(19)

【定義 8】（同次放物）微分方程式 \(\dot{x} = \nu(x) \) の解曲線を同次放物とよぶ（第 3 図）。
同次放物は具体的には以下の補題で与えられる [11]。

【補題 1】ある初期値 \(x_0 \) に対する同次放物は次式とする。
\[
\{ (x_0 e^{r_1 t_1}, \ldots, x_0 e^{r_n t_n}) | t > 0 \}
\]
(20)

6. 準同次プロアップ

拡大プロアップは特異点の解析において強力な方法であるが、ベクトル場が古典的な意味で同次できないの場合にはあまり有効でない場合である。しかし、ベクトル場が準同次であれば拡大プロアップとは異なる座標変換を用いることによりベクトル場を解析することができる。これが準同次プロアップである。

準同次プロアップにはいくつかのバリエーションが知られている [4]。まず代表的な極準同次プロアップについて紹介しよう。極準同次プロアップは以下のようないくつかの条件を満たす。
\[
\Phi: \mathbb{S}^{n-1} \times \mathbb{R}^n \to \mathbb{R}^n
\]
(21)
ただし、\(\sum_{i=1}^{n} x_i^2 = 1 \) とする。式 (4) 式と (21) 式を比較すると座標変換において \(r \) に \(r \) 乗して変換する点が異なており、この工夫により退化特異点を効率よく解析することが可能になっている。
一方、2次元システムの解析に用いられる準準同次
プロアップも準同次ベクトル場のプロアアップとして知られている。

\[\Phi : M \times \mathbb{R} \rightarrow \mathbb{R}^n \]

\[(x_1, x_2, r) \mapsto (r^{x_1} x_1, \ldots, r^{x_n} x_n) \]

ただし，\((x_1, x_2) \in M := \{(x_1, x_2) | x_1^{2 \alpha} + x_2^{2 \beta} = \alpha \}\)である。

極プロアアップ，準同次プロアアップはいずれも座標変換に \(n-1\) 次元球面 \(S^{n-1}\) と直線 \(\mathbb{R}\) を用いていたが，準同次準同次プロアアップは球面と同相な空間 \(M\) と直線 \(\mathbb{R}\)を用いている。2次元準同次ベクトル場の解析には準準同次プロアアップのほうが解析が楽なことも多く，準同次システムの解析にはプロアアップする空間をどのように選べばよいかという問題が大きな問題となっている。

7. Kawasakiによる \(\Delta\)-同次システムが漸近安定であるための必要十分条件

これまで述べた極プロアアップはユークリッド空間で定義されたベクトル場を球面上のベクトル場と射影を用いると定義できるものである。非線形運動理論においては，Kawasaki[7]が極準同次プロアアップに一致した手法を用いて \(\Delta\)-同次システム定義の漸近安定性を示した。本章ではこの条件を紹介するが，未解決の問題が多いため，ベクトル場や多様体に不慣れな読者は本書は飛ばしていただいて問題ない。

本章では拡大指数 \(r\) に関して \(k\) 次である \(\Delta\)-同次システム \(\dot{x} = f(x)\) を考える。 \(\Delta\)-同次システムに対し，Kawasakiは球面で前章で導入した多様体 \(M\) ではなく，5章で導入した同次ノルムの集合 \(\Delta_{1} := \{x | x_1 = 1\}\)を用いてシステムを解析した。\(\Delta_{1}\) 上の微分方程式系は次式のようになる。

\[\dot{x} = (\pi_{*} F)(x), \quad x \in \Delta_{1} \]

ただし，\(\pi_{*} F\)は \(\Delta_{1}\) 上のベクトル場である（具体的な分岐解は紹介していない）。このベクトル場の \(\omega\) 極限集合を全体と \(\Omega\)をとる。すなわち，

\[\Omega = \{\omega(x) | x \in \Delta_{1}\} \]

である。さらに，集合 \(\Omega^{\overline{C}}\)を以下のように定義する。

\[\Omega^{\overline{C}} = \{\Delta_{1}^{\overline{C}}(x) | x \in \Omega\} \]

このとき，以下の定理が得られている。

【定義 2】拡大指数 \(r\) に関して \(k\) 次である \(\Delta\)-同次システム \(\dot{x} = f(x)\)を考える。この同次システムの原点が漸近安定であるための必要十分条件は以下の制限系において原点が漸近安定であることである。

\[\dot{x} = f(x) \quad (x \in \Omega^{\overline{C}}) \]

定理を簡単に解説する。\(\Delta\)-同次システムを \(\Delta_{1}\)と直線に分割し，\(\Omega^{\overline{C}}\)に属する点を考慮する。 \(\Delta_{1}\)上の一元ベクトル場の \(\omega\) 極限集合が全体と \(\Omega\)をとる。すなわち，

\[\Omega = \{\omega(x) | x \in \Delta_{1}\} \]

である。さらに，集合 \(\Omega^{\overline{C}}\)を以下のように定義する。

\[\Omega^{\overline{C}} = \{\Delta_{1}^{\overline{C}}(x) | x \in \Omega\} \]

このとき，以下の定理が得られている。

【定義 2】拡大指数 \(r\) に関して \(k\) 次である \(\Delta\)-同次システム \(\dot{x} = f(x)\)を考える。この同次システムの原点が漸近安定であるための必要十分条件は以下の制限系において原点が漸近安定であることである。

\[\dot{x} = f(x) \quad (x \in \Omega^{\overline{C}}) \]

定理を簡単に解説する。\(\Delta\)-同次システムを \(\Delta_{1}\)と直線に分割し，\(\Omega^{\overline{C}}\)に属する点を考慮する。 \(\Delta_{1}\)上の一元ベクトル場の \(\omega\) 極限集合が全体と \(\Omega\)をとる。すなわち，

\[\Omega = \{\omega(x) | x \in \Delta_{1}\} \]

である。さらに，集合 \(\Omega^{\overline{C}}\)を以下のように定義する。

\[\Omega^{\overline{C}} = \{\Delta_{1}^{\overline{C}}(x) | x \in \Omega\} \]

このとき，以下の定理が得られている。

【定義 2】拡大指数 \(r\) に関して \(k\) 次である \(\Delta\)-同次システム \(\dot{x} = f(x)\)を考える。この同次システムの原点が漸近安定であるための必要十分条件は以下の制限系において原点が漸近安定であることである。

\[\dot{x} = f(x) \quad (x \in \Omega^{\overline{C}}) \]

定理を簡単に解説する。\(\Delta\)-同次システムを \(\Delta_{1}\)と直線に分割し，\(\Omega^{\overline{C}}\)に属する点を考慮する。 \(\Delta_{1}\)上の一元ベクトル場の \(\omega\) 極限集合が全体と \(\Omega\)をとる。すなわち，

\[\Omega = \{\omega(x) | x \in \Delta_{1}\} \]

である。さらに，集合 \(\Omega^{\overline{C}}\)を以下のように定義する。

\[\Omega^{\overline{C}} = \{\Delta_{1}^{\overline{C}}(x) | x \in \Omega\} \]

このとき，以下の定理が得られている。

【定義 2】拡大指数 \(r\) に関して \(k\) 次である \(\Delta\)-同次システム \(\dot{x} = f(x)\)を考える。この同次システムの原点が漸近安定であるための必要十分条件は以下の制限系において原点が漸近安定であることである。

\[\dot{x} = f(x) \quad (x \in \Omega^{\overline{C}}) \]

定理を簡単に解説する。\(\Delta\)-同次システムを \(\Delta_{1}\)と直線に分割し，\(\Omega^{\overline{C}}\)に属する点を考慮する。 \(\Delta_{1}\)上の一元ベクトル場の \(\omega\) 極限集合が全体と \(\Omega\)をとる。すなわち，

\[\Omega = \{\omega(x) | x \in \Delta_{1}\} \]

である。さらに，集合 \(\Omega^{\overline{C}}\)を以下のように定義する。

\[\Omega^{\overline{C}} = \{\Delta_{1}^{\overline{C}}(x) | x \in \Omega\} \]

このとき，以下の定理が得られている。

【定義 2】拡大指数 \(r\) に関して \(k\) 次である \(\Delta\)-同次システム \(\dot{x} = f(x)\)を考える。この同次システムの原点が漸近安定であるための必要十分条件は以下の制限系において原点が漸近安定であることである。

\[\dot{x} = f(x) \quad (x \in \Omega^{\overline{C}}) \]

定理を簡単に解説する。\(\Delta\)-同次システムを \(\Delta_{1}\)と直線に分割し，\(\Omega^{\overline{C}}\)に属する点を考慮する。 \(\Delta_{1}\)上の一元ベクトル場の \(\omega\) 極限集合が全体と \(\Omega\)をとる。すなわち，

\[\Omega = \{\omega(x) | x \in \Delta_{1}\} \]

である。さらに，集合 \(\Omega^{\overline{C}}\)を以下のように定義する。

\[\Omega^{\overline{C}} = \{\Delta_{1}^{\overline{C}}(x) | x \in \Omega\} \]

このとき，以下の定理が得られている。
以下に、同次固有値を用いた同次システムが漸近安定であるための必要条件に関する重要な定理を示す [18]。

【定理 4】システム \(\dot{x} = f(x) \) を考える。ここで、\(f \)は連続かつ、拡大指数 \(r \)に関して \(r \)次の \(\Delta \) 同次であり、
\(f(0) = 0 \)であるとする。ここで、次式を満たす \(\lambda \in \mathbb{R} \)および \(x_0 \in \mathbb{R}^n \)が存在すると仮定する。

\[
f(x_0) = \lambda \|x_0\|_1 \nu(x_0) \tag{29}
\]
このとき以下が成立する。

(1) \(\lambda > 0 \) をみたす \(\lambda \) が存在するとき：システムは不安定である。

(2) \(\lambda = 0 \) をみたす \(\lambda \) が存在するとき：システムは漸近安定ではない。

(3) \(\lambda < 0 \) をみたす \(\lambda \) が存在するとき：\(t \to +\infty \)のとき \(x(t) \to 0 \)となるような解が存在する。さらに、同次固有ベクトルと Euler 球面上の射影ベクトルの間には密接な関係をもっており以下の命題が成立する [12]。

【命題 1】同次システムの特異点は同次固有ベクトルである。

線形同次方向系は \(r = (1, \ldots, 1) \)である \(\Delta \) 同次システムであり、この場合同次固有値は係の固有値に一致する。これより理解していたかのように、筆者らの手法は線形の固有値解析を非線形に拡張しようと試みるものである。

10. \(\Delta \) 同次システムの漸近安定性

前章までの議論を用いると、\(\Delta \) 同次システムの漸近安定性に関する以下定理が得られる [11]。

【定義 5】有限なる \(\Delta \) 同次システムを考える。ここで、
\(f_0 \)は \(E_1 \)への射影ベクトルとする。射影システム \(\dot{x} = f_0(x) \)のすべての解の \(\omega \) 極限集合は \(1 \)であり、すべての同次固有値が負であるとき、システムは漸近安定である。

なお、同次近似システムが定理の仮定を満たすならば、もとの微分方向系が局所漸近安定になることは明らかである [19]。

Euler 球面を用いた手法の長所は解析が容易であることである。とくに、勾配同次系の適当なベクトル場においてその効果を大きく、勾配同次系は以下のように定義されるシステムである [10]。

【定義 12】以下のシステムを考える。

\[
\dot{x} = f(x) \tag{31}
\]
ここで、\(f \)は同次、連続かつ \(f(0) = 0 \)であり、次式を満たす \(\mathbb{R}^n \)で定義される \(C^1 \) 級関数 \(\mathbb{R}^n \to \mathbb{R} \)が存在する。

\[
f(x) = \sum_{i=1}^{n} \frac{\partial U}{\partial x_i} \frac{\partial}{\partial x_i} \tag{32}
\]
このとき、システムは勾配同次系であるという。
中村：ブロアアップを用いた同次ベクトル場の解析

11. おわりに

本稿では、ベクトル場の特性点解析のための手法として提案されている梯ブロアアップを紹介し、同次ベクトル場と三角同次ベクトル場を紹介した。さらに、筆者らが提案しているEuler球面の射影ベクトル場を用いたブロアアップに極めてよく似た手法を紹介した。

なお、ブロアアップは退化特性点をもつような制御システムの解析に有効であろうと考えられるが、これまでに提案された利用法は少ない。筆者らによる解析法のアイデアとして文献[20,21]を紹介しておく。

最後に、ベクトル場のブロアアップと数学における準同次ベクトル場についてご教授いただいた京都大学理学研究科の国府憲司先生に深く感謝いたします。

(2007年11月29日受付)

参考文献

著者略歴

中村 文一（正会員）
1976年8月13日生，2003年6月奈良先端科学技術大学院大学情報科学研究科博士後期課程修了，同年7月同大学助手，2007年4月助教となり現在に至る。非線形制御理論，ロボット制御などの研究に従事，計測自動制御学会，日本ロボット学会，IEEEなどの会員。