物流と配送拠点の同時考慮による多段階配送システムの設計

荒川 雅裕*

1. はじめに

施設配置問題は、空間内で最適位置を決定する問題として古くから取り組まれており、工場、倉庫、配送センター、学校、病院、廃棄物処理場など、その適用範囲は広い。一般に、施設配置問題における評価対象は利用者からの距離とされているが、企業レベルでは経済的な効果が重視されているため、施設配置費用を評価対象に含むことが多い。この問題は都市計画分野において、学校や病院などの各種公共施設の配置による“まちづくり”や“社会インフラ整備”に関係して利用される場合も多く、距離や設置費用などの定量的な評価だけではなく、利用者の満足度や地域住民の社会活動に及ぼす影響などの定量化が困難な指標も検討の対象とされている[1-3]。

現在の採用業においては、グローバル化による製造拠点の分散や、販売一体化と顧客への即時対応を目指したサプライチェーン上の在庫管理の必要性から、従来に比べて物流に依存する管理・運用が避けられなくなっており、必然的に、製造業で扱われる物流業務では、サプライチェーン全体で多段階の配送システムが構成される。配送業務や在庫管理などの企業やその部署で管理できる資源によって管理の精度や効率は異なるが、配置拠点の適切な配置は配送や在庫管理の効率化に対して有効な手段となる。一方、現在では物流専門業者へのアウトソーシングが広く行われており、サードパーティー・ロジスティクス(3PL)として知られるようになっただけでなく、3PLの企業は情報技術の発展のもとで、独自の運送方法を展開し、業務範囲を拡大している。その結果として3PLは複数の企業から構成されるサプライチェーン全体の運用の効率化を目的としている。ただし、複数の企業間での配送の効率化のための“共同配送”や“一括配送”、RFIDを利用した在庫管理の効率化とトレーサビリティの実現は、複数の製造業の企業と複数の販売店を連接する中間在庫拠点としての利用などの新しい仕組みが積極的に運用されている。

日本ロジスティクスシステム協会の『物流コスト調査報告』[4]によると、日本国内の経済全体に占める物流コスト(マクロ物流コスト)の総額は44.2兆円(2008年度概算)であり、GDPに対する割合では8.9%にのぼる。現在の国内の物流業界の市場規模は約19兆円(2010年調査)であることから、その差である約25兆円が荷主の自社物流コストと考えられ、このコストは将来、アウトソーシングによる3PLへの移行が期待される。この報告での企業アンケートによれば、物流コスト削減策として「物流拠点の見直し」をあげている企業が多い。これは、需要変動に対して柔軟かつ適切に物流拠点の選定ができていないことが示唆するものに、年齢や家族構成などの居住者の特徴と分布を考慮して拠点配置の配置や規模の柔軟化ができれば、配送や在庫管理を効率的に進められることができる。一企業が柔軟に配送システムを変更できる仕組みを構築することは困難であるが、3PLならばは企業と販売店間を柔軟に連携し続けるとともに連携して運用を進めることができる。このような理由からも柔軟に物流拠点を変更し、工場や販売店間のネットワークを構築するため、3PLの企業の今後の取り組みが期待される。

2. 施設配置と拠点間配送量の同時決定問題

工場、配送センター、販売店(需要地)を通じて、生産地から消費地までの配送先をつなげた多段階の構造は、配送計画問題の典型的なサプライチェーンのモデルである。従来の多段階配送計画は、工場や販売店での生産量と需要量の既知情報から配送容量と保管容量の制限のもと、配送コストの最小化を目的として各段階における配送先の配分量を決定する問題である[5,6]。しかしながら、長期的に見て配送先の販売店は変化しないとは限らず、また、販売店が固定されていても需要量は地域によって異なる。従来より、販売店の設置時には販売店を利用する領域(地域)の人口などで需要量の見積も行われているが、同様に需要の予測量を利用して配送センター
を適当に配置することで需要変動に対して即時的な製品供給の運用、配送コストや在庫量の削減が期待できる。

本稿では2段階配送モデルにおける配送セーターの配置と配送量の決定問題を容量制約付き施設配置問題として取り扱う。求解に当たり、(1) 施設の配置が可能な位置を離散的に与え、(2) 地図上の分布から予測される販売店の需要量を評価し、(3) 配送セーターの保管許容量を制約条件とする。ここでは、(4) 工場・配送センター間、配送センター・販売店間の総距離を目的関数とする。配送センターの最適配置位置を探索するに当たり、地図上で格子を作成し、配送センターの候補地を格子の交差点とすることで従来からの施設の選択問題として扱うとともに、格子サイズを段階的に変化させることで適切な配置を高い精度で決定する問題にでき、計算時間の削減も行う。以下、問題の定式化を行い、開発した解析方法の特徴と単純モデルによる利用例を示す。

3. 配送システムのモデル化

3.1 モデルの特徴

配送モデルは工場、配送センター（以下、DCと略記）、販売店（需要地）から構成される2段階配送システムである。ここでは工場からDCまでの配送は第1段階、DCから販売店までを第2段階と分ける。第1図は2段階配送システムの概要図である。2段階配送システム内のDCの配置問題を取り、DCから工場とDCから販売店の総距離を目的関数とする。

DCの配置は2次元地図上で検討する。第2図は2次元地図上の工場、DC、販売店の配置例を示す。地図上で工場と販売店の配置は所与とする。また、DCの配置を決定するため、地図上に格子を描画し、格子にDCを設定するとともに格子の各領域に対して需要量を設定し、各販売店での製品の需要量を見積もり、販売店の需要量を各需要量から与えられる需要量を正規分布に仮定して見積もりたうえで、各需要量の年齢別人口から需要量を見積もりることなどが考えられる。

3.2 数理モデル

以下に問題の記号の定義と定式化を示す。

定数

PLANT：工場の集合
DC：配送センターの集合
SHOP：販売店の集合
d_{ij}：工場iからDCjまでの距離
d_{jk}：DCjから販売店kまでの距離
CM_{ij}：地図上の格子(i,b)に存在する工場iの許容在庫量もしくは最大生産量（格子(i,b)は工場iが存在する格子を指す）
CM_{jk}：地図上の格子(i,b)に存在する配送センターjの許容在庫量（格子(i,b)は配送センターjが存在する格子を指す）
CM_{jk}：地図上の格子(i,b)に存在する販売店kの需要量

（格子(i,b)は販売店kが存在する格子を指す）

CM_{ij}：地図上の格子(i,b)内の需要量
M_{ij}：地図上の格子(i,b)内に存在するDCの数
μ_{ij}：地図上の格子(i,b)における需要量の平均値
σ_{ij}：地図上の格子(i,b)における需要量の標準偏差
S_{ij}：地図上の格子(i,b)内の影響を与える販売店の数（格子内に含まれる異なるポロノイ領域数）

変数

R_{ij}：0-1変数、工場iからDCjの配送があれば1、なければ0
R_{jk}：0-1変数、DCjから販売店kの配送があれば1、なければ0
X_{ij}：工場iからDCjの配送量 (X_{ij} \geq 0)
X_{jk}：DCjから販売店kの配送量 (X_{jk} \geq 0)
M_{ij}：地図上の格子(i,b)内にDCが配置されるか配置されないかの0-1変数（配置されれば1、その他は0）

目的関数

\[
\sum_{i \in \text{PLANT}} \sum_{j \in \text{DC}} R_{ij}d_{ij} + \sum_{j \in \text{DC}} \sum_{k \in \text{SHOP}} R_{jk}d_{jk} \quad (1)
\]
制約式 (主要部のみ)

\[\sum_{j \in DC} X_{ij} \leq C_{D_i} \quad \forall i \in PLANT \quad (2) \]

\[\sum_{k \in SHOP} X_{jk} \leq C_{D_i} \quad \forall j \in DC \quad (3) \]

\[X_{jk} = C_{S_{i_k}} \quad \forall k \in SHOP \quad (4) \]

\[\sum_{i \in PLANT} X_{ij} = \sum_{k \in SHOP} X_{jk} \quad \forall j \in DC \quad (5) \]

\[X_{ij} \leq C_{D_i} R_{ij} \quad \forall i \in PLANT, \quad \forall j \in DC \quad (6) \]

\[X_{jk} \leq C_{D_j} R_{jk} \quad \forall j \in DC, \quad \forall k \in SHOP \quad (7) \]

(1) 式は目的関数であり, 工場から DC, および DC から販売店の距離の総和を表す。(2) 式は工場 \(i \) に対する最大生産量の制約, (3) 式は DC \(j \) から配送される総配送量の制約を, (4) 式は販売店 \(k \) に配送される総配送量と需要量に関する制約を示す. (5) 式は DC \(j \) に対して入荷配送量と出荷配送量が一致することを示す. (6), (7) 式はそれぞれ工場と DC 間, DC と販売店間での配送量が DC での在庫許容量以下であることを示す。

4. 探索手法の開発

4.1 遺伝的アルゴリズム

本問題では, 実用的な計算時間で近似最適解を得るために遺伝的アルゴリズム (以下, GA と略記) を導入する。第 3 図は染色体の例を示しており, 染色体内の遺伝子は拠点番号を示す. 染色体左部の数列は工場と DC の拠点を連続した番号で表し, 右部の数列は DC と販売店を連続した番号で表す. DC の全候補地の拠点番号を用いるため, 染色体の長さは一定である. 染色体内的数列の開十り, 配送元もししくは配送先の選定を優先する. 染色体の数列の優先度から一つの拠点を選択し, その拠点に最も近い拠点を選択することで配送を行うペアを作る. そして, 需要源と在庫量を調査し, 拠点間の配送量を決定する. この操作を全販売店の需要量を満たすまで繰り返す。

4.2 格子サイズの変化による探索

本計算法では異なる施設間の位置が地図上の格子サイズに依存するため, 探索操作の過程で配置位置の精度を粗から細に変化させるために, 探索領域のエリア込みと高精度での配置決定を試みる. 具体的には, 格子サイズを 2 段階に変化させ, 第一段階では粗い格子を用いて DC の候補地数を減らし, 第二段階では細かい格子を利用し, 第一段階で探索した DC の近傍から DC の位置を探索する. 第 4 図は段階的に変化させた場合の格子の例
手続き格子では考慮されていない細かい格子上での複数のDCが選択される可能性があるため、DCの許容配送料量を大きくする。具体的には (3) 式のDCの許容在庫量を第1段階の換え格子では存在していない第2段階の細かい格子のDCの許容在庫量の総和として (8) 式により算出する。$C_{D_{lb}}$ は DCの1段階あたりの許容在庫量を示しており、本計算ではこの値は定数とする。

$$C_{D_{lb}} = \sum_{l=1}^{l+1} \sum_{b=1}^{b+1} C_{D_{lb}} \quad \forall j \in DC \quad (8)$$

4.4 格子分割による需要量の算出

この節では純粋モデルを利用して、販売店の需要量を算出する。DCの配置は2次元平面内とし、工場と販売店の配置を所与とする。第5図は配置例であり、工場が1、販売店が6である。地図上を格子によって分割し、直線の交点をDCの配置候補とする。DCの数は地図上の格子による分割数によって影響する。

販売店の需要量に関しては、ポロノイ図を利用して各販売店が影響される範囲を決定する。各販売店の影響領域（担当する顧客が存在する領域）は販売店を母点とするポロノイ領域とする。第6図は第5図の配置に対する分割例を示しており、格子内の数字はポロノイ境界によって分割された領域数を示す。なお、空白の格子は未分割の。

ポロノイ境界が存在する格子の需要量はポロノイ境界によって分割される領域数で等分割し、各数値を異なる販売店の需要量に割り付ける。これにより、S_{lb} を各格子での分割数として、販売店 k の需要量 $C_{S_{lb}}$ を (9) 式によって算出する。販売店の需要量は、格子 (l,b) 内の需要量を分布 $N(\mu_{lb},\sigma_{lb})$ と仮定して、算出する。 (9),(10) 式は格子 (l,b) 内の需要量の算出式を示す。

$$C_{S_{lb}} = \sum_{l=1}^{l+1} \sum_{b=1}^{b+1} C_{M_{lb}} \quad \forall k \in SHOP \quad (9)$$

$$C_{M_{lb}} = F^{-1}(p|\mu_{lb},\sigma_{lb}) = F\left(F^{-1}(p|\mu_{lb},\sigma_{lb})\right) = \frac{1}{\sigma_{lb}} \sqrt{2\pi} \int_{-\infty}^{CM_{lb}} \frac{(t-\mu_{lb})^2}{2\sigma_{lb}^2} \, dt \quad (10)$$

ここです、$bs(k),bc(k)$ は販売店 k を母点とするポロノイ領域の b^* の最小格子番号、最大格子番号である。$ls(k,b^*), le(k,b^*)$ は同一ポロノイ領域において、b^* における l^* の最小格子番号、最大格子番号である。

5. 単純モデルによる数値実験

5.1 単純モデルの特徴

第5図に示す単純モデルを利用して、上記のGA法（以下、提案法と略記）によるDCの配置と拠点間の配送料量を求め、計算対象の地図は100×100の2次元平面とし、平面上に10×10を1格子とする格子（格子数N = 10×10）を作成する。第1表に工場と販売店の配置を示し、第5図は需要分布の概要を示す。各格子での需要量は第5図の分布からランダムに平均と標準偏差を設定し、(9) 式によって算出した、配送拠点の位置の候補となる格子は10×10で設定する。DCの在庫許容量は500とする。

5.2 格子サイズの可変による効果と提案法の特徴

GA法の第1段階に利用する粗い格子として、20×20で1格子とする格子（格子数N = 5×5）を設定する。
第1表 各拠点の配置座標および工場の最大生産量と販売店の概算需要量

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>工場</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>販売店</td>
<td>73</td>
<td>15</td>
<td>1467</td>
</tr>
<tr>
<td>2</td>
<td>87</td>
<td>5</td>
<td>667</td>
</tr>
<tr>
<td>3</td>
<td>39</td>
<td>24</td>
<td>900</td>
</tr>
<tr>
<td>4</td>
<td>93</td>
<td>22</td>
<td>1000</td>
</tr>
<tr>
<td>5</td>
<td>72</td>
<td>57</td>
<td>1200</td>
</tr>
<tr>
<td>6</td>
<td>19</td>
<td>82</td>
<td>450</td>
</tr>
</tbody>
</table>

第2表 異なる方法による総距離、DC数、および計算時間の比較

<table>
<thead>
<tr>
<th></th>
<th>総距離</th>
<th>DC数</th>
<th>計算時間[s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>提案法</td>
<td>588.339</td>
<td>13</td>
<td>192</td>
</tr>
<tr>
<td>方法1</td>
<td>616.219</td>
<td>12</td>
<td>127</td>
</tr>
<tr>
<td>方法2</td>
<td>643.351</td>
<td>12</td>
<td>226</td>
</tr>
<tr>
<td>方法3</td>
<td>557.638</td>
<td>12</td>
<td>1570</td>
</tr>
<tr>
<td>方法4</td>
<td>557.638</td>
<td>12</td>
<td>73859</td>
</tr>
</tbody>
</table>

格子サイズの操作の影響の評価のため、提案するGA法と以下的方法を比較する。

方法1 粗い格子（N=5×5）に対する提案法の適用
方法2 細かい格子（N=10×10）に対するGAの適用
方法3 提案法の格子サイズの2段階法を利用して(1)
から(7)式による数理モデルへの適用
方法4 細かい格子（N=10×10）に対して、(1)から(7)
式による数理モデルへの適用

図3, 4ではCPLEX9.0（ILOG社）を利用する。さらに、第5図に示す全格子を方法2と方法4に採用する。提案法と方法1,2の遺伝子操作のパラメータについて、個体数は50,最大世代数は1000,交叉確率は0.8,突然変異確率は0.2とする。

交叉処理はWMX法(Weight Mapping Crossover: WMX)を利用する。突然変異では染色体内的任意の2点の遺伝子を交換する。次世代への選択操作にはルーレット選択法とエリート保存選択法を併用する。

第2表は25回の試行結果の最良値を示し、第7図は提案法と方法4（図ではMethod4と表記）によって得られたDCの配置を示す。提案法によって得られた誘の総距離は方法4によって得られた最適解の6%ほど大きい値である。一方、計算時間では提案法は他方の1/600である。提案法から得られたDC数とDCの位置の分布は最適解（方法4）の結果と類似し、配置の略は格子の程度である。方法2は提案法に比べて総距と計算時間の両方で劣る。これは、方法3においてDCの候補数が大きいため、提案法による探索の過程で容易に局所解に

第7図 提案法と方法4によるDCの配置の比較

第8図 異なるDCの在庫許容量に対するDC数と総距離の変化（提案法による計算）

捕まっていることが考えられる。方法1では大きな格子を利用してDCの候補地としており、探索対象の要素数が少ないため、計算時間が最も短いかが最良となる配置の精度が落ちるため総距離は大きい。方法1と提案法の比較から、解の品質について格子サイズの探索の効果が得られている。また、方法3と方法4の比較から格子サイズの操作による計算時間の削減効果が得られている。

5.3 配送センターにおける在庫許容量の影響

前節の計算では各DCの在庫許容量が500としたが、在庫許容量はDC数と配置の両方に影響を与える。第8図はDCの異なる在庫許容量に対して、提案法によって得られたDC数と総距離を示す。図中の各マーカーは25回の計算結果の平均値であり、エラーバーは標準偏差を示す。図よりDCの在庫許容量の小さい条件では許容量の増加によってDC数も総距離も急激に減少するが、許容量が大きい条件では両値のほぼ定常値をとる。許容量が6000の条件（配送量より大きい）における計算結果において、DC数が3のときの総距離（平均値）は189.424であり、DC数が1のときの総距離（平均値）は229.65
近年、物流業界の各企業は海外での物流を対象にビジネスを広げているが、日本の製造関連企業だけではなく、海外企業も卷き込んだサプライチェーンの構築が必須である。今後、海外の各国でも物流の重要性が増すことで交通網や都市のインフラが整備されていくものと考えられる。とくに、今後、製造・販売の重要拠点となる東南アジアの国々ではインフラの構築、住民の異動などが頻繁に起こることから、都市の成長に合わせて動的に変化できる配送システムの導入は有効な手段と思われる。

本研究は関西大学大学院理工学研究科のHsung Wei Cheng君の平成21年度修士論文を参考にしたもの。ここに感謝の意を示します。

(2012年4月25日受付)

参考文献

[1] 藤井：土木計画学の新しいかたち—社会科学・社会哲学と土木の関わりに—土木計画学研究・論文集，Vol.22，
No.1，pp.11-118 (2005)

著者略歴

荒川 雅裕（正会員）

1995年埼玉大学工学部土木工学科卒業、同年東京大学大学院工学研究科博士前期課程修了、同年東京大学大学院工学研究科博士後期課程修了、同年東京大学大学院工学研究科博士後期課程修了、2012年4月大学院大学院工学系研究科社会工学専攻修了、現在に至る。2005年マサチューセッツ工科大学客員研究員、社会システム工学、社会システムに関する情報システムの研究に従事、日本公共工学会、日本情報学会などの会員。