ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Discrete Particle Simulation of Solid Flow in a Model Blast Furnace
Zongyan ZHOUHaiping ZHUAibing YUBryan WRIGHTDavid PINSONPaul ZULLI
Author information

2005 Volume 45 Issue 12 Pages 1828-1837


This paper reports a numerical study of solid flow in a model blast furnace under simplified conditions by means of discrete particle simulation (DPS). The applicability of the proposed DPS approach is validated from its good agreement with the experiment in terms of solid flow patterns. It is shown that the DPS is able to generate a stagnant zone without any need for any arbitrary treatment, and capture the main features of solid flow within the furnace at a microscopic level. The results confirm that the solid flow in a blast furnace can be divided into four different flow regions. However, the flow is strongly influenced by the front and rear walls in a 2D slot model furnace whereas the predicted stagnant zone decreases significantly with wall sliding friction. In a 3D model with periodic boundary conditions incorporated, a smaller stagnant zone is obtained. The effects of solid flow rate, particle properties such as sliding and rolling friction coefficients on the solid flow are also investigated. The results are analysed in terms of solid flow patterns, solid velocity field, porosity distribution and normal force structure. The implication to blast furnace operation is discussed.

Information related to the author
© 2005 by The Iron and Steel Institute of Japan
Previous article Next article