ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Numerical Simulation of Liquid Metal Free-surface Flows in the Presence of a Uniform Static Magnetic Field
Toshio Tagawa
Author information

2007 Volume 47 Issue 4 Pages 574-581


Three-dimensional numerical simulations with a new-developed modeling of two-phase flow have been carried out for free-surface flows of an electric conducting fluid in the presence of a uniform static magnetic field. In this study, several examples such as collapsing liquid column, oscillating droplet in a non-gravitational field and falling droplet in a gravitational field are presented. The driving mechanisms of the flow in these problems are the gravity and the surface tension. The numerical results reveal that the induced electromagnetic force acts to dampen the electric conducting fluid flow efficiently when a uniform vertical magnetic field is applied while it acts to enforce a tendency of two-dimensional flow when a uniform horizontal magnetic field is applied.

Information related to the author
© 2007 by The Iron and Steel Institute of Japan
Previous article Next article