1. Introduction

The surface tension of molten slag is one of the most important parameters for controlling the various interfacial phenomena in the refining or continuous-casting process of steelmaking. However, it is not often possible to find appropriate data on the surface tension of molten slag targeted for specific purposes, because molten slag is usually a multi-component oxide, sulfide, and fluoride system, where the effects of these components on the surface tension is very complicated, and not all the data (particularly over a wide temperature and composition range) have been reported. It is, therefore, indispensable to develop a prediction system for determining the surface tension of multi-component molten slag.

Tanaka et al. developed a predicting model1–3) for determining the surface tension of molten oxide mixtures, thermodynamically-based on Butler’s equation4) and on the procedure proposed by Speiser et al.5) Recently, Tanaka et al. modified this model by using the ratio of the cation to anion radius as a model parameter.6) This improved model is characterized by the simplicity with which it can be extended to multi-component systems, particularly since the calculations are conducted only with respect to information based on the surface tension and molar volume of the pure components, and on the anionic and cationic radii. The evaluated results for the surface tension agree well with literature data.

2. Model for Estimation of the Surface Tension of Molten Slag

A thermodynamic model for determining the surface tension of molten ionic mixtures, derived by considering the ionic radii of the components, was extended to multi-component slag systems. The composition dependence of the surface tension in 6-component systems of the type CaO–SiO2–Al2O3–MgO–Na2O–CaF2 was evaluated with the present model using information based on the surface tension and molar volume of the pure oxide components, and on the anionic and cationic radii. The evaluated results for the surface tension agree well with literature data.

KEY WORDS: surface tension; molten slag; mold flux; ionic radius.

Recently, further improvements were applied to the modified model based on the above hypotheses.7) First, the temperature dependence of the surface tension was evaluated for pure oxides not only in their liquid region, but also below their melting points. Second, the minimum unit of SiO2 was considered to be SiO4_4/2H_11002, and the radii ratio of Si_4/1 to SiO_4/2 was experimentally determined to be 0.5. These improvements allowed the modified model to be extended to evaluations for ternary molten slags, which includes not only such oxides as SiO2, Al2O3, CaO, FeO, MgO and MnO, but also surface-active components such as Na2O, B2O3 and CaF2.7,8)

In this work, a still further extension of the above modified model was attempted for determining the surface tensions of the more complex 6-component slag systems. The resulting calculated surface tensions were compared with the experimental data obtained from the multi-component system, and the effects of the addition of Al2O3, MgO and Na2O on the surface tension of CaO–SiO2–CaF2 system were discussed.
\[\sigma = \sigma_{\text{SiO}_2}^{\text{pure}} + \frac{RT}{A_{\text{SiO}_2}} \ln \frac{M_{\text{Bulk}}}{M_{\text{SiO}_2}} \](1)

\[\sigma = \sigma_{\text{CaO}}^{\text{pure}} + \frac{RT}{A_{\text{CaO}}} \ln \frac{M_{\text{Bulk}}}{M_{\text{CaO}}} \](2)

\[\sigma = \sigma_{\text{Al}_2\text{O}_3}^{\text{pure}} + \frac{RT}{A_{\text{Al}_2\text{O}_3}} \ln \frac{M_{\text{Bulk}}}{M_{\text{Al}_2\text{O}_3}} \](3)

\[\sigma = \sigma_{\text{MgO}}^{\text{pure}} + \frac{RT}{A_{\text{MgO}}} \ln \frac{M_{\text{Bulk}}}{M_{\text{MgO}}} \](4)

\[\sigma = \sigma_{\text{Na}_2\text{O}}^{\text{pure}} + \frac{RT}{A_{\text{Na}_2\text{O}}} \ln \frac{M_{\text{Bulk}}}{M_{\text{Na}_2\text{O}}} \](5)

\[\sigma = \sigma_{\text{CaF}_2}^{\text{pure}} + \frac{RT}{A_{\text{CaF}_2}} \ln \frac{M_{\text{Bulk}}}{M_{\text{CaF}_2}} \](6)

where

\[M_i^P = \left(\frac{R_A}{R_X} \cdot N_i^P \right)^{1/3} \left(\frac{R_i^{+}}{R_{\text{SiO}_2}} \cdot N_i^{+} + \frac{R_i^{2+}}{R_{\text{CaO}}} \cdot N_i^{2+} + \frac{R_i^{3+}}{R_{\text{Al}_2\text{O}_3}} \cdot N_i^{3+} + \frac{R_i^{4+}}{R_{\text{MgO}}} \cdot N_i^{4+} + \frac{R_i^{+}}{R_{\text{Na}_2\text{O}}} \cdot N_i^{+} + \frac{R_i^{2+}}{R_{\text{CaF}_2}} \cdot N_i^{2+} \right) \](7)

Subscript \(i \) refers to the following components: \(\text{SiO}_2 \), \(\text{CaO} \), \(\text{Al}_2\text{O}_3 \), \(\text{MgO} \), \(\text{Na}_2\text{O} \) or \(\text{CaF}_2 \). Subscripts \(A \) and \(X \) refer to the cations and anions of component \(i \), respectively. Super-scripts “Surf” and “Bulk” indicate the surface and bulk, respectively. \(R \) is the gas constant, \(T \) is the absolute temperature, \(\sigma_{\text{SiO}_2}^{\text{pure}} \) is the surface tension of the pure molten component \(i \), which is treated as a model parameter. \(A_i = N_i^{1/3} \cdot V_i^{2/3} \) corresponds to the molar surface area in a monolayer of pure molten component \(i \) (\(N_i \): Avogadro’s number, \(V_i \): molar volume of the pure molten component \(i \)), \(N_i^P \) is the mole fraction of the component \(i \) in phase \(P \) (\(P \) = Surf or Bulk). \(R_A \) is the radii of the cation, and \(R_X \) is the radii of the anion. For example:

\[R_A = R_{\text{Si}^{4+}}^{2+}, \quad R_{\text{Ca}^{2+}}^{2+}, \quad R_{\text{Al}^{3+}}^{3+}, \quad R_{\text{Mg}^{2+}}^{2+}, \quad \text{or} \quad R_{\text{Na}^{+}}^{+} \](8)

\[R_X = R_{\text{Si}^{4+}}^{2+}, \quad R_{\text{O}^{2-}}^{2-}, \quad \text{or} \quad R_{\text{F}^{-}}^{-} \](9)

where \(\text{Si}^{2+} \) is considered to be the minimum anionic unit in \(\text{SiO}_2 \), and the value of \(R_{\text{Si}^{2+}}^{2+}/R_{\text{SiO}_2}^{4+} \) was experimentally determined to be 0.5.7

The above Eqs. (1)–(6) have been derived on the basis of Butler’s equation4 by considering the following assumptions [1] and [2]5:

[1] It has been known that molten ionic mixtures readily undergo surface relaxation due to spontaneous changes in the ionic distance at the surface, which causes the energetic state of the surface to approach that of the bulk state. Thus, the contribution from excess Gibbs energy terms is neglected in Butler’s equation.

[2] In ionic substances, it is well known that their ionic structures depend upon the ratio of the cation to anion radii. In order to evaluate the ionic structures and physico-chemical properties of ionic materials, the cation to anion radii ratio should be considered.

Data on the ionic radii were obtained from Shannon,9) and the molar volumes of the pure oxides recommended by Mills and Keene10) were used in the present model. These values are listed in Tables 1 and 2, respectively.

Regarding the temperature dependences of the surface tensions for pure \(\text{SiO}_2 \) and \(\text{CaF}_2 \), those recommended by NIST11) were used for the calculations in this study. The temperature dependences of the surface tension for pure \(\text{CaO}, \text{Al}_2\text{O}_3, \text{MgO} \) and \(\text{Na}_2\text{O} \) were evaluated in previous work7,8) and used in the current study. The equations for determining the temperature dependences of surface tension are listed in Table 3.
3. Results and Discussion

3.1. Quaternary System

The surface tension of molten slag for the CaO–SiO$_2$–CaF$_2$ system was evaluated in the previous work. Based on these results, the effects of Al$_2$O$_3$, MgO or Na$_2$O addition on the surface tension of the above ternary system were evaluated in this study. The calculated results for the surface tension are shown in Fig. 1. Figure 1(a) is based on the results obtained for the CaO–SiO$_2$–CaF$_2$ system reported by Nakamoto et al. The three lines in this figure indicate the calculated results for the iso-surface tensions 350, 400 or 450 mN/m respectively. The experimental values were quoted from literature results. Some of the experimental values, which exist near the CaF$_2$ apex in this figure, are lower than the calculated values. Especially, there were such experimental values as lower than 300 mN/m near CaF$_2$. The reason on the low value of the experimental results is not evident, but these values might be evaluated too low under some specific experimental conditions. Except for this point, the calculated results reproduced the experimental values. Figure 1(b) shows the effect of Al$_2$O$_3$ addition on the surface tension of the ternary system shown in Fig. 1(a). Here, Al$_2$O$_3$ was supposed to be added in mole fractions of 0.1 or 0.2 while, the liquidus, which is expected to shift due to Al$_2$O$_3$ addition, was not considered here. With the addition of Al$_2$O$_3$, the three iso-surface tension lines shifted toward the SiO$_2$–CaF$_2$ line, thus the surface tension was found to increase in the whole composition range of the system. Figure 1(c) shows the effect of MgO addition on the surface tension of the CaO–SiO$_2$–CaF$_2$ system. Similar to the case of Al$_2$O$_3$, addition shown in Fig. 1(b), the surface tension increased through the whole composition range of the system. Figure 1(d) shows the effect of Na$_2$O addition on the surface tension of the CaO–SiO$_2$–CaF$_2$ system. Contrary to the cases of Al$_2$O$_3$ and MgO addition, the three iso-surface tension lines shifted toward the CaO apex with Na$_2$O addition. Thus, Na$_2$O is found to cause a decrease in the surface tension through the whole composition range of the system. The effect of the addition of Al$_2$O$_3$, MgO and Na$_2$O on the surface tension is summarized in Fig. 2. This figure shows the relation between the mole fraction ratio of CaO to SiO$_2$ (basicity) and the surface tension at 1773 K, where the surface tension increased with increasing basicity. Here, the basic composition refers to the composition in which the mole fractions of CaO and SiO$_2$ are both 0.4 and that of CaF$_2$ is 0.2. For example, in the case where the basicity increases from 1.0 to 1.2, the surface tension increases from 388 to 397 mN/m, accordingly. An increase in the surface tension can be obtained by the addition of Al$_2$O$_3$ or MgO with 0.09–0.10 mol fractions, rather than the effect of basicity.

3.2. System with 4–6 Components

The surface tension of molten slag with 4 to 6 components is evaluated and compared with the literature data.
Figure 3 shows the relation between Al₂O₃ content and the surface tension of the molten slag. We selected here the literature data, which were measured at almost the similar composition range to the condition of the present calculation. The experimental values are different from each other, but the present model reproduced the dependency of the surface tension on Al₂O₃ content. Literature data 13–16) were selected so as not to cause large changes in the content of the other components. The present model reproduced well the literature data for the surface tension and composition dependence with Al₂O₃ addition.

Figure 4 shows the relation between MgO content and the surface tension of the molten slag. Similar to the case of Al₂O₃, as shown in Fig. 3, the present model also reproduced the surface tension results, and the evaluated results agreed well with the literature data 17–20).

Figure 5 shows the relation between Na₂O content and the surface tension of the molten slag. Here, there is a large difference between the calculated results and the data reported by Yakushev et al. 21) Referring the other data on Na₂O in binary or ternary systems including Na₂O, 12) it seems to be difficult to make the surface tension decrease down to about 200 mN/m with Na₂O addition of only 0.1 mol fraction. Furthermore, the data by Yakushev was evaluated under the condition of higher basicity range at higher temperature than the present calculation. The calculated result agreed well with the data of Takayanagi et al. 22)

3.3. Reproducibility

Figure 6 shows a comparison between the evaluated results and surface tension literature data for the molten CaO–SiO₂–Al₂O₃–MgO–Na₂O–CaF₂ slag system. Here, the literature data are the same as those in Figs. 3–5. The reproducibility was evaluated as the average error defined as Eq. (10). The average error of the present model was 17.5%.

\[
\text{Average error} = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{\sigma_{\text{Calc}} - \sigma_{\text{Expe}}}{\sigma_{\text{Expe}}} \right| \times 100 \% \quad (10)
\]

In Fig. 6, the plots indicated with (*) correspond to the data for the CaO–SiO₂–Al₂O₃–MgO–Na₂O–CaF₂ system reported by Yakushev et al., 21) which are positioned slightly off the broken line. In their data, the surface tension shows a large dependence on Na₂O content. The present model shows that the dependence of the surface tension on Na₂O content is not much larger than that reported by...
By removing the literature data (Yakushev et al.) from the data plots, the average error in Eq. (10) is reduced to 10.3%.

4. Conclusions

A thermodynamic model for evaluating the surface tension of molten ionic mixtures by considering their ionic radii was extended to molten slags of multi-component systems including CaO, SiO$_2$, Al$_2$O$_3$, MgO, Na$_2$O and CaF$_2$. The calculated results obtained using the present model reproduced well the surface tension composition dependence of the molten slag in a 6-component system.