ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
The Effect of Silicon on the High Temperature Oxidation Behavior of Low-carbon Steels Containing the Residual Elements Copper and Nickel
Bryan A. WeblerSeetharaman Sridhar
Author information

2007 Volume 47 Issue 9 Pages 1245-1254


This study investigates effects of silicon on copper- and nickel-rich phases during the oxidation of iron-based alloys containing 0.3 wt% copper and 0.3 wt% copper +0.15 wt% nickel in addition to steel samples containing various amounts of copper (0.17–0.41 wt%), nickel (0.03–0.13 wt%), and silicon (0.03–0.12 wt%). Samples were exposed to air at 1 150°C for 60, 300, and 600 s. A low-carbon steel sample (0.02 wt% silicon) without copper and nickel was subjected to the same conditions for comparison.
The oxidation rates of copper- and nickel-containing steels decreased with time and were consistently lower than the rate of the residual-free low-carbon steel. An internal oxide layer was observed only in the copper- and nickel-containing steels. The number of internal oxides in this layer increased with oxidation time and larger internal oxides in this layer were characterized to be rich in iron and silicon. Compared to the iron–copper–nickel alloy, steels containing copper, nickel, and silicon, had more copper-, nickel-rich material found as particles entrapped in the oxide.
It is proposed that the population of internal silica particles increases due to increasing oxygen content near the oxide/metal interface. The rise in oxygen content results from increased oxygen solubility caused by copper and nickel enrichment. These internal oxides decrease oxidation rate and assist occlusion. An increase by a factor of 10 in amount of occluded material was measured in material containing copper, nickel and silicon compared to copper and nickel.

Information related to the author
© 2007 by The Iron and Steel Institute of Japan
Previous article Next article