ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Fractal Dimension of Grain-boundary Fracture for Characterization of High-temperature Fracture in Heat-resistant Alloys
Manabu TanakaJunji OnoManabu SakashitaRyuichi Kato
Author information
JOURNAL FREE ACCESS

2009 Volume 49 Issue 8 Pages 1229-1238

Details
Abstract

The fractal dimension of the grain-boundary fracture, Df, (2<Df<3), which represents the fracture surface pattern with grain-boundary microcracks in three-dimensional space, is proposed for characterization of high-temperature fracture in materials. The value of Df as well as its two dimensional value, Dfp (the fractal dimension of the grain-boundary fracture surface profile, 1<Dfp<2), was estimated in the length scale range more than about one grain-boundary length using the height data of fracture surfaces of heat-resistant alloys obtained by the stereo matching method. The value of Df increased with increasing fractal dimension of the grain-boundary surface profile (DGB, 1<DGB<2) in the specimens of the HS-21 alloy ruptured at 1089 K. Both rupture life and creep ductility increased with increasing value of Df in these specimens. Similar results were obtained by the two-dimensional fractal analysis on other specimens of cobalt-base, nickel-base and iron-base heat-resistant alloys. Creep fracture process including the growth of the main creep crack was examined by the fractal analysis using the fractal dimension map (FDM, a color-coded map) on the surface notched specimens. The result of the fractal analysis was compared with that of the FRASTA (fracture surface topography analysis) in the Inconel X-750 alloy. The fractal analysis used in this study is more convenient and more advantageous than the FRASTA, and is widely applicable to the investigation of high-temperature fracture in materials.

Content from these authors
© 2009 by The Iron and Steel Institute of Japan
Previous article Next article
feedback
Top