ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Multiphase Modeling of the Fluidynamics of Bottom Argon Bubbling during Ladle Operations
Carlos A. LlanosSaul GarciaJ. Anģel Ramos-BanderasJose de J. BarretoGildardo Solorio
Author information
JOURNAL FREE ACCESS

2010 Volume 50 Issue 3 Pages 396-402

Details
Abstract

The objective of the present study is the optimization of the ladle stirring operation through a multiphase mathematical model and an analogue physical model. Four cases were considered using one and two argon injection inlets with different configuration, where the multiphase steel/slag/argon system was simulated numerically in Three-Dimensional Unsteady State conditions and a water/oil/air system for the physical model was considered. The Volume of Fluid (VOF) model was employed to simulate numerically the interaction among the phases considering the surface tensions. The simulation results were evaluated by a fluidynamics analysis of the systems and by a numerical prediction of three important operation parameters: mixing time, lining refractory wear and slag opening. The implementation of two argon inlets did not reduce the mixing time; however, the slag layer opening was decreased in a 30%, and the refractory wear in terms of the skin friction coefficient value was also decreased in a 63%. These results confirm that it is imperative to consider, for numerical simulation, the three phases present during ladle operations.

Content from these authors
© 2010 by The Iron and Steel Institute of Japan
Previous article Next article
feedback
Top