ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Modeling and Validation of an Electric Arc Furnace: Part 1, Heat and Mass Transfer
Vito LogarDejan DovžanIgor Škrjanc
Author information
JOURNAL FREE ACCESS

2012 Volume 52 Issue 3 Pages 402-412

Details
Abstract

The following paper presents an approach to the mathematical modeling of heat and mass transfer processes in a 3–phase, 80 MVA AC, electric arc furnace (EAF) and represents a continuation of our work on modeling the electric and hydraulic EAF processes. This paper represents part 1 of the complete model and addresses issues on modeling the mass, temperature and energy processes in the EAF, while part 2 of the paper focuses solely on the issues related to the thermo-chemical relations and reactions in the EAF. As is generally known, the chemical, thermal and mass processes in an EAF are related to each other and cannot be studied completely separately; therefore, the work presented in part 1 and part 2 is related to each other accordingly and should be considered as a whole. The presented sub-models were obtained in accordance with different mathematical and thermo-dynamic laws, with the parameters fitted both experimentally, using the measured operational data of an EAF during different periods of the melting process, and theoretically, using the conclusions of different studies involved in EAF modeling. In conjunction with the already presented electrical and hydraulic models of the EAF, the heat-, mass- and energy-transfer models proposed in this work represent a complete EAF model, which can be further used for the initial aims of our study, i.e., optimization of the energy consumption and development of the operator-training simulator. The presented results show high levels of similarity with both the measured operational data and the theoretical data available in different EAF studies, from which we can conclude that the presented EAF model is developed in accordance with both fundamental laws of thermodynamics and the practical aspects regarding EAF operation.

Content from these authors
© 2012 by The Iron and Steel Institute of Japan
Previous article Next article
feedback
Top