ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Phase-field Simulations of Grain Growth in Two-dimensional Systems Containing Finely Dispersed Coarsening Particles
Yoshihiro Suwa
Author information
JOURNAL FREE ACCESS

2012 Volume 52 Issue 4 Pages 582-591

Details
Abstract

In this study, we have performed phase-field simulations of grain growth in two-dimensional systems containing finely dispersed coarsening particles. In particular, the effects of the Ostwald ripening of particles on the grain growth kinetics and the morphology of the matrix grains have been investigated. After reaching a steady state, not only does the growth of the particles obey power-law kinetics, but also the growth of the matrix grains, with an exponent of 3. In the case of systems having a small fraction of immobile particles, the grain size distributions (GSDs) of the matrix grains become broader with a small fraction of particles. For systems containing particles that coarsen with simulation time, the GSDs become narrower with an increase in the area fraction of the particles, fp(0). We have applied both active parameter tracking (APT) algorithms and parallel coding techniques to the multi-phase-field (MPF) model to accelerate the computations and to embody large-scale calculations.

Content from these authors
© 2012 by The Iron and Steel Institute of Japan
Previous article Next article
feedback
Top