ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Kinetics of Nitrogen Absorption and Desorption in High-Cr Molten Steel under Pressurized Atmosphere
Fumio Takahashi Yoshikazu MomoiKoji KajikawaKatsunari Oikawa
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2016 Volume 56 Issue 10 Pages 1746-1750

Details
Abstract

The rates of nitrogen absorption and desorption in high-Cr molten steel under a pressurized atmosphere were investigated using a pressurized directional solidification furnace. In this study, the melting experiments were performed under a maximum gas condition of 1.0 MPa. It was found that nitrogen absorption rate took the same value under the conditions of unified partial pressure on N2 gas in spite of the different total pressure. The mass transfer coefficient in the liquid phase of high-Cr molten steel at 1823 K was estimated as 0.0009 m·s−1. On the other hand, it was found that the rate constant at the gas/liquid interface for the nitrogen desorption reaction decreased with the increase of nitrogen partial pressure. This result indicates that the nitrogen activity in the molten steel has an influence on the chemical reaction at the gas/liquid interface. Furthermore, the mass transfer coefficient in the gas phase decreased with the increase of total pressure. As numerical kinetic analysis shows, this result suggests that mass transfer in the gas phase is very important for the nitrogen absorption and desorption reactions under a pressurized atmosphere.

Content from these authors
© 2016 by The Iron and Steel Institute of Japan
Previous article Next article
feedback
Top