ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Melting Separation Behavior and Mechanism of High-chromium Vanadium–bearing Titanomagnetite Metallized Pellet Got from Gas-based Direct Reduction
Jue Tang Mansheng ChuCong FengYating TangZhenggen Liu
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2016 Volume 56 Issue 2 Pages 210-219

Details
Abstract

The recoveries of vanadium, chromium, and titanium are much low in the current process of high-chromium vanadium–bearing titanomagnetite. The gas-based direct reduction followed by melting separation process was proposed because the valuable elements including iron, vanadium, chromium, and titanium can be utilized simultaneously and all the recoveries should increase. The melting separation study was carried out in the present work, and the behavior as well as mechanism during melting separation process was investigated. The effect of temperature on the melting separation kinetic was more considerable than thermodynamic. As increased basicity, the area of liquid phase was enlarged and the solubility of Al2O3 in slag was increased. The main mineral in separation slag was anosovite (MgTi2O5), besides a small number of pseudobrookite (Fe2TiO5), perovskite (CaTiO3), and spinel (Ca3Al2O6). The melting separation was improved by the increasing C/O, temperature, time, additive of CaF2, and basicity. The rational melting separation parameters for high-chromium vanadium–bearing titanomagnetite contained a C/O of 1.2, a melting temperature of 1625°C, a melting time range of 40–50 min, an additive CaF2 of 2%, and a basicity of 1.1. Under these conditions (melting time of 50 min), the melting separation was achieved successfully. Both the titanium-bearing slag together with the iron containing vanadium and chromium was obtained. The recoveries of Fe, V, Cr, and TiO2 could reach around 99%, 97%, 92%, and 94%, respectively; and the mass fraction of Fe, V, Cr, and TiO2 were 93.50%, 0.90%, 0.69%, and 37.52%, respectively.

Content from these authors
© 2016 by The Iron and Steel Institute of Japan
Previous article Next article
feedback
Top