ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Effect of Hydrogen Addition on Reduction Kinetics of Iron Oxides in Gas-injection BF
Yana QieQing LyuJianpeng LiChenchen LanXiaojie Liu
Author information

2017 Volume 57 Issue 3 Pages 404-412


The gas-injection BF is a new iron-making technology with injecting gas instead of the traditional pulverized coal injection and recycling the BF top gas through the gasifier. Compare with traditional BF, there is a larger amount of reducing gas such as CO and H2 in gas-injection BF. Effect of H2 addition on reduction kinetics of iron oxides in gas-injection BF was investigated by Thermogravimetric Analysis. The result shows that the reduction rate of iron oxides rise with the increase in both temperature and H2 content. By contrast with the H2 content increasing from 10% to 15% at 700°C and 900°C, the improvement of reduction rate is more obvious when addition from 15% to 20% at the same temperature. For comparison, it shows an opposite result in the condition of 1000°C. In addition, the efficiency of H2 on reduction rate can be neglected as the content is less than 5%. The reaction mechanism was obtained according to the unreacted core model. In the condition of 30% CO+10% H2, both the diffusion rate and interfacial reaction rate reveal an increasing trend with the increase of temperature, of which the degree of improvement in diffusion rate is more significant, which leads to the interface reaction gradually being the controlling step. The same case occurs with the increase of H2 at 900°C. Under the condition of experiment, the activation energy decreases with H2 addition, which illustrates that the reduction of iron oxides become more easily to perform with the rich hydrogen in gas-injection BF.

Information related to the author
© 2017 by The Iron and Steel Institute of Japan
Previous article Next article