ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Steelmaking
Effect of Operating Conditions on Inclusion of Die Steel during Electroslag Remelting
Gang Du Jing LiZhong-Bing Wang
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2018 Volume 58 Issue 1 Pages 78-87

Details
Abstract

The current paper focuses on the effect of different operating conditions on the content of inclusions and cleanliness of remelting ingots. For these investigations, eight ingots were remelted with two slag amount and with two current intensity under otherwise comparable remelting conditions. A two-dimensional (2D) coupled mathematical model was employed to simulate the velocity field, solidification and inclusion motion for a system of electrode, slag and ingot in electroslag remelting (ESR) processes, to reveal the inclusion removal mechanism. The results showed that the content of large-sized inclusions in ESR ingot was decreased by approximately 66.18% when the slag amount was increased from 17.85 kg to 20.50 kg. Because of the increase of slag amount, the metal and slag flow faster and the maximal velocity increases by 10.3%, thus there is an increasing trend in trajectories of inclusions (i.e., inclusion motion) in slag pool resulted from the stronger natural convective flow, which is beneficial for the inclusion removal. When the average current was increased from 4 kA to 5 kA, the content of large-sized inclusions in ESR ingot was decreased by approximately 51.38%. Because of the increasing of current, the flow in the middle of the slag pool becomes stronger and the maximal downward velocity increases by 2.7%, thus there is an increasing trend in the renewal rate of the metal film surface due to the stronger washing by slag flow, which can promote the inclusion removal.

Velocity fields and inclusion motion in liquid fraction fields of the ingot with different applied remelting current: (a) 4000 A, (b) 5000 A, (c) 10000 A. (Online version in color.) Fullsize Image
Content from these authors
© 2018 by The Iron and Steel Institute of Japan
Previous article Next article
feedback
Top