ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Ironmaking
Fate of Nitrogen and Sulfur during Reduction Process of Carbon-containing Pellet Prepared by Vapor Deposition of Gaseous-Tar and the Influences of the Hetero Elements on the Reduction Behavior and Crushing Strength
Yuuki Mochizuki Naoto TsubouchiTomohiro Akiyama
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2018 Volume 58 Issue 3 Pages 460-468

Details
Abstract

Influences of the vapor deposition (VD) atmosphere on the nitrogen/sulfur contents in carbon-containing pellet and the crushing strength during preparation by VD method of coke oven gas (COG) tar against cold-bonded pellet (CP) are first investigated using a flow-type quartz made fixed-bed reactor and a tensile and compression crushing machine. Although N in NH3 that is fed with simulated-COG components is not transferred into the prepared VD sample, some part of the S in H2S moves the VD sample; the carbonaceous materials derived from COG tar fill the pores of the CP. However, these elements do not affect the crushing strengths of the prepared VD samples. The N and S forms in the VD sample are then investigated using XRD and XPS, and the results show that these elements mainly exist as organic-N and -S in the VD samples. The fates of N and S in the VD sample during the reduction process are examined using a flow-type fixed-bed reactor under inert (He) and reduction (55%H2/He) atmospheres. The N species in the samples mainly evolve as NH3 and N2 at 400–1000°C, and the cumulative amount of N2 that evolves is greater than that of NH3. The H2S evolution begins at 400°C, and the profile provides the main peak at approximately 800°C. The amount of evolved H2S in 55%H2/He is greater than that in He. Although the reduction of the VD sample starts at approximately 400°C and stops at 1000°C, N and S species in the sample do not affect the reduction rate. In addition, the N and S in the VD samples do not influence the crushing strengths during heat treatment.

Content from these authors
© 2018 by The Iron and Steel Institute of Japan
Previous article Next article
feedback
Top