ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Effect of V2O5 Addition on Oxidation Induration and Swelling Behavior of Chromium-Bearing Vanadium Titanomagnetite Pellets with Simulated Coke Oven Gas Injection into Blast Furnace
Wei Dong TangSong Tao YangXiang Xin Xue
Author information

2019 Volume 59 Issue 6 Pages 988-997


The study discusses the oxidation induration and swelling behavior of chromium-bearing vanadium titanomagnetite pellets (CVTP) with V2O5 additions, and the reduction swelling index (RSI) and compressive strength (CS) of reduced CVTP were investigated with simulated coke oven gas (COG) injection into the blast furnace (BF). The results show that the CS of CVTP decreases and the porosity of CVTP increases with increasing V2O5 additions. The proportion of microsize pore size distribution of CVTP between 0 to 5 µm decreases notably while the pore size distribution between 5 to 30 µm increases with increasing V2O5 additions. The V2O5 mainly exists in the form of V2Ti3O9 and V1.93Cr0.07O3 in CVTP and V2TiO5 in reduced CVTP. The V-bearing spinels on the grain boundaries with fragmentized and prismatic structure restrain the CS of CVTP. The CS of reduced CVTP decreases and RSI increases with increasing V2O5 additions. The V2O5 addition facilitates the aggregation and diffusion of metallic iron particles, and the shape of the metallic iron whiskers transform round dot to prismatic. The pores and intervals enlarge, and thickness of lamellar crystals thickens gradually with increasing V2O5 additions. The study could supply the theoretical and technical basis for the utilization of CVTP and other V-bearing ores with COG recyclable technology.

SEM images of reduced CVTP with V2O5 additions: (a) 0 mass%; (b) 2 mass%; (c) 4 mass%; (d) 6 mass%. Fullsize Image
Information related to the author
© 2019 by The Iron and Steel Institute of Japan
Previous article Next article