ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Special Issue on "Recent Approaches to Control of Cohesive Zone Phenomena and Improvement of Permeability in Blast Furnace"
Agglomeration of Return Fines of Sinter for Blast Furnace Raw Materials
Yasushi Ogasawara Takeshi SatoJun IshiiRyota MuraiShiro Watakabe
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2020 Volume 60 Issue 7 Pages 1389-1394

Details
Abstract

Return fines of sinter were agglomerated with a binder material such as cement and fine powder of blast furnace slag in order to use the agglomerates as raw materials in the blast furnace. Reduction tests of the agglomerates were carried out to investigate the high temperature properties of the agglomerates. The following findings were obtained. The agglomerates have lower RDI (RDI<20%) than sinter because sinter, which consists of brittle glassy silicate, was arranged discretely in the agglomerates and bonded by the soft materials of the binder, and as a result, size degradation during reduction was prevented. The agglomerates have higher RI (DI>70%) than sinter due to the high abundance ratio of fine pores in the agglomerates. Moreover, in comparison with sinter, the agglomerates also have equal or greater strength after reduction at 700°C and 900°C because solid phase sintering was promoted by adding ultrafine iron oxide powder. Therefore, as a blast furnace raw material, the permeability and reducibility of the agglomerates of return fines of sinter are superior to those of conventional sinter. This concept is considered to be effective for utilizing sinter fines as blast furnace raw materials in a high pulverized coal rate and low coke rate operation.

Content from these authors
© 2020 by The Iron and Steel Institute of Japan
Previous article Next article
feedback
Top