ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Special Issue on "Recent Approaches to Control of Cohesive Zone Phenomena and Improvement of Permeability in Blast Furnace"
Topological Consideration of 3-D Local Void Structure for Static Holdup Site in Packed Bed
Shungo Natsui Akinori SawadaHiroshi NogamiTatsuya KikuchiRyosuke O. Suzuki
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2020 Volume 60 Issue 7 Pages 1453-1460

Details
Abstract

This study attempted to conduct a topological data analysis of groups of particles in packed-bed structures to provide quantitative evaluations of void shapes. This study examined the spatial correlation between the packed bed structure and the holdup sites through geometric data obtained from the coordinates of the various particles composing the packed bed to isolate characteristic structural data for liquid holdup sites in a packed bed. When the study defined “bottlenecks” as narrow areas of a scale below capillary length, it was discovered that, in packed beds consisting of particles of a single diameter, the contribution to holdup was related to the number density of bottlenecks. Regarding the dependence on the void fraction of the holdup sites, as trends were demonstrated that differed from the continuous change that accompanies changes in the modified Capillary number, the difference from the dimensionless correlation occurs. When particles of differing diameters intermingle, the bottleneck number density increases near particles with small diameter, and the percentage of blockages from droplets increases. As position and density differ depending on the particle packing method, it is suggested that holdup sites decrease in number when particles with small diameter are appropriately dispersed.

Fullsize Image
Content from these authors
© 2020 by The Iron and Steel Institute of Japan
Previous article Next article
feedback
Top