ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Forming Processing and Thermomechanical Treatment
Crystal Plasticity Modeling for Non-ferrous Metals and its Engineering Applications
Takayuki Hama
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2020 Volume 60 Issue 9 Pages 1849-1862

Details
Abstract

Crystal plasticity models enable predictions of macroscopic deformation behavior as well as texture evolution of metallic materials based on mesoscopic deformation at the grain level. Owing to recent improvements in predictive accuracy, crystal plasticity models are expected to be used not only for academic purposes but also for industrial applications. There are several possible approaches for utilizing crystal plasticity models in industrial applications, including numerical material testing, in which the material parameters of phenomenological constitutive models are determined; alternative constitutive equations in simulations; and the development of innovative materials with improved formability. In this review paper, recent progress in crystal plasticity modeling, specifically in terms of engineering applications, is discussed. The focus is primarily on hexagonal close-packed (hcp) metals, including magnesium alloy and commercially pure titanium sheets, which exhibit strong anisotropic and asymmetric deformation behavior. On the basis of our recent progresses, the crystal plasticity modeling was first explained, followed by some application examples for a variety of loading conditions, including uniaxial tension and compression, reverse loading, and biaxial tension. The application to face-centered cubic (fcc) and body-centered cubic (bcc) metals and future prospects are also discussed.

Content from these authors
© 2020 by The Iron and Steel Institute of Japan
Previous article Next article
feedback
Top