ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Special Issue on "Toward Suppression of Hydrogen Absorption and Hydrogen Embrittlement for Steels"
Effect of Iron Rust on Hydrogen Uptake during Steel Corrosion under an Aqueous NaCl Droplet
Saya Ajito Eiji TadaAzusa OoiAtsushi Nishikata
著者情報
ジャーナル オープンアクセス HTML

2021 年 61 巻 4 号 p. 1186-1193

詳細
抄録

The effect of iron rust on hydrogen uptake into steel during corrosion under an aqueous NaCl droplet was investigated. Pre-rusted steel was obtained by exposing a steel coupon to natural environmental conditions for 1 month at the Choshi site of the Japan Weathering Test Center. The iron rust that formed on the coupon was partly removed, and model rust/steel samples differing in the area ratios of rusted and bare steel were prepared. The hydrogen permeation current and the corrosion potential were simultaneously measured by Devanathan-Stachurski (DS) method and the Kelvin probe technique, respectively. As the applied droplet of aqueous NaCl dried, the corrosion potential shifted in the negative direction and the hydrogen permeation current slightly increased in all model samples. However, the corrosion potential and hydrogen permeation current did not differ substantially among the model samples once the rusted area of the model sample exceeded 50%. These results indicate that iron rust cause a positive shift in the corrosion potential, and hydrogen uptake was significantly suppressed due to the inhibition of the hydrogen evolution reaction. The hydrogen uptake behavior of the model sample is discussed with consideration of the cathodic reduction reaction of iron rust.

著者関連情報
© 2021 The Iron and Steel Institute of Japan.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top