ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Microstructural Size Effect on Strain-Hardening of As-Quenched Low-Alloyed Martensitic Steels
Kenta SakaguchiShigeto YamasakiHiroyuki KawataKohtaro HayashiManabu Takahashi
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2022 Volume 62 Issue 10 Pages 2008-2015

Details
Abstract

Quenched martensitic steels are known to show the characteristic feature of stress–strain relations, with extremely low elastic limits and very large work-hardening. The continuum composite approach is one way to express this characteristic feature of stress–strain curves. Although the overall stress–strain curves, as a function of alloy chemistries of steels, were well represented by this approach, the relationship between the macroscopic deformation behaviors and microstructural information is yet to be clarified. A high-spatial-resolution digital image correlation analysis was conducted to demonstrate the possible unit size corresponding to the microstructure. The continuum composite approach model was also modified to consider the size effect of the microstructure on the stress–strain curves of the as-quenched martensitic steels. Strain concentrations were observed at various boundaries, including lath boundaries, and the characteristic microstructural size was also predicted by the present model, which is smaller than the reported spacing between adjacent strain-concentrated regions.

Fullsize Image
Content from these authors
© 2022 The Iron and Steel Institute of Japan.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top