ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Improvement of High-Temperature Oxidation Resistance of Iron-Base Heat Storage Materials by Aluminizing Using Pack Cementation Method
Daisuke Maruoka Kosuke SatoTaichi MurakamiEiki Kasai
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2022 Volume 62 Issue 12 Pages 2573-2577

Details
Abstract

A new carbonizing and pulverizing process of woody biomass has been proposed, which utilizes sensible heat of industrial flue gas using a heat storage material (HSM). In the present study, Fe–Mn–C alloy was examined as a candidate of HSM, however, it has rather poor high-temperature oxidation resistance and therefore its aluminizing treatment was attempted to solve this problem. The Al-rich layer growth and alumina formation behaviors on the Fe–Mn–C alloy during aluminizing treatment using the pack cementation method were studied. Alloy samples were aluminized at 700–900°C for 3–12 h. Change in the sample weight was measured using a TG at 1000°C for 24 h in air.

FeAl layer formed in the early stage of aluminizing, followed by Fe2Al5 layer formation. Acicular FeAl2 phase precipitates in the FeAl layer. The sample aluminized at 700°C for 12 h does not have sufficient oxidation resistance, whereas ones aluminized at 800°C for 12 h and 900°C for 3–12 h show superior oxidation resistance. Continuous Al2O3 layer is formed due to presence of FeAl2 or Fe2Al5 in Al-rich layer.

Fullsize Image
Content from these authors
© 2022 The Iron and Steel Institute of Japan.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top