ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Fundamentals of High Temperature Processes
Simulation of Thermal Decomposition of Partially Calcined Spherical Limestone Injected into a Molten Iron Bath
Yuichi TsurukawaShinobu OwadaKazuki ItoKimihisa Ito
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2022 Volume 62 Issue 3 Pages 602-605

Details
Abstract

To reduce the consumption of energy and materials, it is necessary to develop a more efficient method for refining iron. The use of partially calcined limestone as a refining flux is expected to increase the mass transfer and reaction area via thermal decomposition of CaCO3 and violent CO2 generation. A model was developed to simulate the decomposition of the limestone particles in molten iron using multi-physics analysis, in which the equations for multiphase flow, heat transfer, and chemical reactions were solved simultaneously. The particle penetration behavior and the temperature and mass distributions of CaCO3 were calculated as a function of time. A large amount of CO2 is generated in a short period, which is expected to generate a strong stirring effect and destroy the flux particles.

Fullsize Image
Content from these authors
© 2022 The Iron and Steel Institute of Japan.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top