ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Casting and Solidification
A High-efficiency Virtual Submesh Cellular Automata Method for Solidification Simulation with Low Mesh Anisotropy
Ling ShiSongzhe XuHeyu LuChaoyue ChenSansan ShuaiTao HuAndrew KaoJiang Wang Zhongming Ren
著者情報
ジャーナル オープンアクセス HTML

2022 年 62 巻 8 号 p. 1674-1683

詳細
抄録

The cellular automata (CA) method has been widely used in microstructure simulation during solidification, but it is time-consuming when used for multiple orientations and large-scale computation. In this work, a novel high-efficiency virtual submesh cellular automata (VISCA) method is proposed to reduce the mesh-induced artificial anisotropy. This method conceptually divides the mesh into a series of submeshes by giving a unique index to each CA cell. The proposed VISCA method results in a good accuracy in all orientations using uniform mesh, while an aggressive time stepping can be used. Compared with the previous CA models, the VISCA method exhibits a significant reduction in computational cost and improvement in computational efficiency. The nucleation is simulated based on a continuous nucleation model, and the Kurz-Giovanola-Trivedi (KGT) model is used to simulate the growth of the grains nucleated in the bulk material. The proposed VISCA method is comprehensively validated using an analytical solution, a casting simulation, and a directional solidification experiment. A quantitative comparison with the experiment in the directional solidification example shows that the difference in position of Columnar-to-Equiaxed Transition (CET) between the simulation and the experiment is within 1 mm while the length of directional solidification is 60 mm.

Fullsize Image
著者関連情報
© 2022 The Iron and Steel Institute of Japan.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top