ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Modeling of Cohesive Metal-induced Agglomeration in High Temperature Gas Fluidization: The Role of Particle Size
Zhan DuFeng PanYu GeZheng Zou
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML
Supplementary material

2023 Volume 63 Issue 8 Pages 1281-1288

Details
Abstract

The defluidization behavior of cohesive metal particles with different sizes in high-temperature gas fluidization was studied experimentally and theoretically. Taking iron particles as an example, first, we theoretically assessed the variation in sintering neck size with the characteristic parameters (particle size dp, temperature T, gas velocity ug, and sintering time τ) in high temperature gas fluidization and found that larger particles can form a greater sintering neck and induce a shorter sintering time (collision contact time). In particular, the calculated results with different empirical correlations are quite different. Then, according to the microstructure observations, we assume that a stable sintering neck is formed between the metal particles when defluidization occurs. On the basis of this, a quantitative relationship between particle size and operating parameters (temperature and gas velocity) is established, where appropriate empirical correlations are selected by fitting the experimental results. Furthermore, it is demonstrated that the new model can successfully predict the defluidization behavior of other cohesive metal particles (Co, Ni, and Cu) with different sizes in high temperature gas fluidization.

Fullsize Image
Content from these authors
© 2023 The Iron and Steel Institute of Japan.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top