ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Atomic and Effective Pair Interactions in FeC Alloy with Point Defects: A Cluster Expansion Study
Tien Quang NguyenMary Clare Sison EscanoKazunori SatoYoji ShibutaniTamio OguchiTetsuo Mohri
Author information
JOURNALS OPEN ACCESS Advance online publication

Article ID: ISIJINT-2019-019


The Cluster Expansion Method (CEM) is used to investigate the pair interactions in body centered cubic (BCC) FeC alloy in the presence of vacancies. Within the CEM framework, the relation of cluster (point and pair) probabilities and set of independent correlation functions are derived. These are then applied to calculate the effective cluster interaction and atomic pair interaction energies for Fe, C and vacancy in FeC system. We found that, in this alloy, the interaction mostly comes from the first nearest neighbor pairs, and, to some degree, from the third nearest neighbor pairs. Detailed analysis shows that, within the first nearest neighbor pair interactions approximation, the C–C and Fe–C pair interactions are repulsive where the former one is more dominant. This is attributed to the local stress field formed in the vicinity of C atoms which pushes the first nearest neighbor atoms away to maintain the equilibrium distances. Moreover, there is an attractive interaction between C and vacancy which implies the possibility of C atoms to be trapped at vacancy site.

Information related to the author
© 2019 by The Iron and Steel Institute of Japan
Previous article Next article