ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559

This article has now been updated. Please use the final version.

Microstructure Evolution and Tempering Transformation Kinetics in a Secondary Hardened M50 Steel Subjected to Cold Ring Rolling
Feng WangDongsheng QianLechun XieZhaohua DongXinda Song
Author information
JOURNAL OPEN ACCESS Advance online publication

Article ID: ISIJINT-2020-293

Details
Abstract

The microstructure evolution and tempering transformation kinetics of the M50 steel subjected to cold ring rolling (CRR) have been investigated. The results indicate that the brass R{110}<110> texture is weakened with the enhancement of the <111>//ND texture during CRR. Due to the increased low angle boundaries by CRR, the Ac1 temperature decreases while the carbon content and volume fraction of RA increase. During tempering, the activation energy of carbon atoms segregation and transition carbide precipitation decrease, while the activation energy of retained austenite (RA) decomposition increases after CRR. The kinetic analysis shows that the CRR is beneficial to the carbon atoms segregation during the beginning of tempering. Then, the CRR leads to the delay of the onset of transition carbide precipitation, but decreases the whole reaction time, which has been verified by the transmission electron microscopy (TEM) and hardness results. The lagging of transition carbide precipitation in the early stage is caused by the increased segregation trapping of carbon atoms, while the higher nucleation rate is responsible for the enhanced precipitation of transition carbide during the later stage. For the cementite formation, there are no significant changes in the predictive kinetics after the applied CRR. However, the kinetic transformation of RA decomposition is inhibited by the CRR, which is attributed to the higher carbon content and smaller grain size of RA. Additionally, the alloy carbides precipitation is also enhanced by the CRR process during secondary hardening.

Content from these authors
© 2020 by The Iron and Steel Institute of Japan
feedback
Top