ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559

This article has now been updated. Please use the final version.

Effect of CaF2 on Viscosity and Refining Ability of Highly Basic Slags for Duplex Stainless Steel
Lichun ZhengHuabing LiXiaolu WangZhouhua JiangHao Feng
Author information
JOURNAL OPEN ACCESS Advance online publication

Article ID: ISIJINT-2020-744

Details
Abstract

To optimize CaF2 content in highly basic CaO-18%Al2O3-SiO2-10%MgO-CaF2 (%CaO/%SiO2=6, denoted as C/S=6) refining slags used for the production of Al-killed duplex stainless steel with high cleanliness demand, the effect of CaF2 content on the viscosity and refining ability of the slags were studied and compared with typical CaF2-free highly basic CaO-30%Al2O3-SiO2-10%MgO (C/S=6) slag. The effect of CaF2 addition in decreasing slag viscosity becomes less obvious with increasing temperature and CaF2 content. When CaF2 content exceeds 10%, slag viscosity only marginally decreases with further increasing CaF2 content. Both monoxide-CaO and monoxide-MgO phases are precipitated in all the CaF2-bearing slags. CaF2 addition slightly increases monoxide-MgO precipitation, but dramatically decreases monoxide-CaO precipitation. Viscosities of the CaF2-bearing slags were also theoretically calculated and good agreement with the measured values was observed. Moreover, the 6% CaF2-bearing slag has very close viscosities above 1833 K but much lower viscosities below 1833 K, compared with the CaF2-free highly basic slag. Further evaluation of the 6% CaF2-bearing slag on steel cleanliness confirms that 6% CaF2 addition is sufficient for the highly basic CaO-18%Al2O3-SiO2-10%MgO-CaF2 (C/S=6) slag. The mechanism of CaF2 in decreasing the viscosity of CaF2-bearing slags was discussed from the viewpoints that CaF2 behaves as a network breaker and that CaF2 suppresses the precipitation of solid phases. The first aspect was identified to play a much greater role in decreasing slag viscosity.

Content from these authors
© 2021 by The Iron and Steel Institute of Japan
feedback
Top