ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559

This article has now been updated. Please use the final version.

Thermophysical Properties of Molten Fe–Cu Alloy Measured Using the Electrostatic Levitation Furnace Aboard the International Space Station (ISS-ELF) under Microgravity Conditions
Yusaku Seimiya Hidekazu KobatakeKazuki Tono-OkaRiku SugaharaShuya KurosawaSuguru ShiratoriKen-ichi SugiokaTakehiko IshikawaChihiro KoyamaYuki WatanabeRina ShimonishiShumpei Ozawa
Author information
JOURNAL OPEN ACCESS Advance online publication

Article ID: ISIJINT-2024-277

Details
Abstract

The thermophysical properties of molten Fe–Cu alloys, including density, surface tension, and viscosity, were measured using the electrostatic levitation furnace aboard the International Space Station (ISS-ELF) under microgravity conditions, which provided an environment that facilitated accurate measurements. The densities of the molten Fe–25at%Cu and Fe–50at%Cu alloys decreased linearly with increasing temperature, and higher copper compositions resulted in increased density. The surface tension of the molten alloys exhibited a unique up-convex temperature dependence curve that initially increased and then decreased as the temperature increased. Viscosity measurements indicated that the viscosity of the molten Fe–Cu alloys decreased with increasing temperature, following a quadratic curve, and that an increase in the copper composition resulted in lower viscosity.

Content from these authors
© 2024 The Iron and Steel Institute of Japan

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license
https://creativecommons.org/licenses/by-nc-nd/4.0/
feedback
Top