ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Cold-rolling and Recrystallization Texture Formation in Electro-deposited Pure Iron with a Sharp and Homogeneous γ-fiber
Naoki YoshinagaDirk VanderschuerenLeo KestensKohsaku UshiodaJozef Dilewijns
Author information
JOURNAL FREE ACCESS

1998 Volume 38 Issue 6 Pages 610-616

Details
Abstract

The formation of the cold-rolling and annealing texture has been investigated in electrolytically deposited pure iron having a sharply developed <111>//ND fiber texture without any anisotropy along γ-fiber nor any orientation density along other fibers. In no respect of cold reduction, {111} <112> texture is formed after cold-rolling. The same texture still remains after the recrystallization in the 65% cold-rolled sheet, whereas the position of the peak is shifted from {111} <112> towards {111} <110> through recrystallization in the 80% cold-rolled sheet. The nucleation texture seems to be responsible for the difference of recrystallization texture between the 65 and 80% cold-rolled sheets. Additionally, it is thought that the growth of the recrystallized grains also plays an important role. It is considered that the recrystallized nuclei with {111} <112> orientation can hardly grow into the deformed matrix of the 80% cold-rolled sheet because they frequently encounter the deformed grains with nearly the same orientation and thus suffer from a reduced mobility. On the other hand, nuclei with a {111} <110> orientation can easily grow into the deformed {111} <112> grains because of the favorable growth orientation relationship between those. Conversely, in 65% cold-rolled sheet, the nuclei with {111} <112> are considered to grow more easily since the frequency of pinning due to limited mobility of a low angle grain boundary is rather small, as compared to that of the 80% cold-rolled sheet. The same mobility argument as applied to the growth of nuclei seems to hold also for the growth of subgrains, namely, nucleation texture formation.

Content from these authors
© The Iron and Steel Institute of Japan
Previous article Next article
feedback
Top