ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Decomposition of Austenite in Austenitic Stainless Steels
A. F. PadilhaP. R. Rios
Author information

2002 Volume 42 Issue 4 Pages 325-327


Austenitic stainless steels are probably the most important class of corrosion resistant metallic materials. In order to attain their good corrosion properties they rely essentially on two factors: a high chromium content that is responsible for the protective oxide film layer and a high nickel content that is responsible for the steel to remain austenitic. Thus the base composition is normally a Fe-Cr-Ni alloy. In practice the situation is much more complex with several other elements being present, such as, Mo, Mn, C, N among others. In such a complex situation one almost never has a single austenite phase but other phases invariably form. Those phases are, with few exceptions, undesirable and they can be detrimental to the corrosion and mechanical properties. It is therefore of considerable importance to study the formation of such phases. In this work the decomposition of austenite in austenitic stainless steels is reviewed in detail. First the binary equilibrium diagrams relevant to the system Fe-Cr-Ni are briefly presented as well as other diagrams, such as the Schaeffler diagram, that traditionally have been used to predict the phases present in these steels as a function of composition. Secondly the precipitation of carbides and intermetallic phases is presented in detail including nucleation sites and orientation relationships and the influence of several factors such as composition, previous deformation and solution annealing temperature. Next, the occurrence of other constituents such as nitrides, sulfides and borides is discussed. TTT diagrams are also briefly presented. Finally the formation of martensite in these steels is discussed.

Information related to the author
© The Iron and Steel Institute of Japan
Next article