ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
The Microbiologically Influenced Corrosion Behavior of C-Mn Ship Structural Steel with Different Manufacturing Processes
Hwan Gyo JungJang Yong YooJong Soo Woo
Author information
JOURNAL FREE ACCESS

2003 Volume 43 Issue 10 Pages 1603-1610

Details
Abstract

The MIC (Microbiologically Influenced Corrosion) of lower deck steel plates in double hull VLCC (Very Large Crude Oil Carrier) cargo tanks has been focused because of severe localized corrosion. Recently, ship companies have reported that TMCP (Thermo-mechanical Control Process) steel plates have been showed more severe localized corrosion than conventional rolled steels. In order to elucidate the MIC resistance of TMCP steels by comparison with conventional rolled steels and normalized steels in environments of double hull VLCC cargo oil tanks, various measurements and corrosion tests were performed such as measurements of polarization curves, immersion tests in bacteria culture medium.
All results revealed that three types of steels have almost the same corrosion resistance in bacteria culture medium. Three kinds of steel exhibit almost the same polarization behavior and the corrosion rate. The movement of the open-circuit potential first towards more negative values and later to more positive values is a phenomenon common to all kinds of specimens. This phenomenon resulted from an initial stimulation of the anodes by sulphide ions produced by the bacteria from the reduction of sulphate ions in the medium, followed by the formation of an insoluble partly protective film of ferrous sulphide on the surface of the electrode. The effect of SRB (Sulphate Reducing Bacteria) is clearly showed in the cathodic polarization curve. When the SRB is in a condition of rapid growth, there is a strong cathodic depolarization. However, as the sulphate is depleted and reaction products accumulate, the activity of the bacteria declines and the cathodic polarization curve returns the same form as in the inoculated culture.

Content from these authors
© The Iron and Steel Institute of Japan
Previous article Next article
feedback
Top