ISDB-Tのキャリヤ間干渉における一検討
A STUDY ON ICI CANCELLER FOR ISDB-T

山崎 晃人 高橋 宏幸 中村 充 伊丹 誠
Akito Yamazaki Hiroyuki Takahashi Mitsuru Nakamura Makoto Itami

伊藤 鉄二 太田 弘毅
Kohji Itoh Hiroki Ohta

東京理科大学 基礎工学部
Department of Applied Electronics, Tokyo University of Science
情報通信研究機構
National Institute Of Information And Communication Technology

Abstract: In OFDM transmission, a loss of sub-carrier orthogonality due to Doppler-spread of the channel leads to inter-carrier interference (ICI), especially, under mobile reception environments. In this paper, we propose the new ICI canceller based on MMSE which does not cause enhancement of noise component. As the result of computer simulation, it is confirmed that the proposed method can improve the bit error rate characteristics under Doppler-spread channel for TSDB-T.

1 はじめに
OFDM信号を移動受信する場合には、ドップラーシフトによって周波数オフセットが生じ、サブキャリア間の直交性が崩れるために、キャリア間干渉（Inter-Carrier Interference:ICI）が生じる。搬送波周波数、移動体の運動速度、搬送波周波数、信号の符号等に大きく影響される。ICIの影響は深刻なものとなり、誤り率が大きく劣化する。そこで、著者らはマルチパス環境下での移動干渉を想定した、ドップラーシフトによって生じるICIを除去するシステムについて提案している[1]。しかし、ゼロフォーニング型のICIキャンセラーは雑音の強調が生じてしまい、劣悪な伝送路では充分に特性を改善することができなかった。そこで本稿では、雑音を強調しないMMSE型のICIキャンセラーを提案する。そして、1セグメントISDB-Tにおいて、移動体終端で部分受信を行った場合のドップラーシフトによるICIの影響を軽減する。

2 OFDM信号の受信特性
マルチパス環境下での干渉受容を想定すると、受信側では複数の異なったドップラーシフトを受けた従振スペクが混ざりあって受信される。しかし、個々の伝振スペクの複素減衰および遅延時間は一定であり、受信機の移動によって生じるドップラーシフトをΔfiとする。そのときの受信信号は

\[s_p(t) = \sum_{i=1}^{N_p} r_i s(t - \tau_i) e^{j2\pi \Delta f_i (t - \tau_i)} \] 　(1)

となる。ただし、s(t)は送信信号である。受信信号はダウンコンバージョンの後、処理化、FFTが行われ、k番目のOFDM信号のl番目の搬送波に対するデータシンボル \(\hat{d}(k, l) \) は以下の式で表される。ただし、伝送路の遅延広がりはガードインターバル長を超えないものとする。

\[\hat{d}(k, l) = h(k, l) d(k, l) + \sum_{n=1}^{N-1} h(k, l, n) d(k, n) + w(k, l) \] 　(2)

ここで、 \(w(k, l) \) はk番目のOFDM信号のl番目の搬送波に対する雑音の影響を表している。ICIは搬送波周波数を\(\alpha \)とするとき

\[h(k, l, n) = \sum_{i=1}^{N_p} \frac{1}{N} \frac{1}{\sin \left(\frac{\pi(n-l+\alpha_i)}{N}\right)} \times e^{j \frac{2\pi(n-l+\alpha_i)}{N}} \times e^{j2\pi\alpha_i f_i T_k} \times r_i \epsilon^{j2\pi(n-f_0+\alpha_i)\tau_i} \] 　(3)

となる。ここで、\(\alpha_i (\alpha_i = \Delta f_i / f_0) \) はi番目のパスの正規化周波数オフセットである。

3 提案システム
提案システムは、まずパイロットシンボルを使って遅延プロファイルとドップラープロファイルを推定し、その推定値を用いてICIを除去する。

3.1 遅延プロファイルとドップラープロファイルの推定
提案方式では、(4)式に示す平均2乗誤差を評価関数とし、これを最小にすることにより各パスの複素減衰量、遅延時間、ドップラーシフトを推定する。

\[E(k, l) = \sum_{P} |z(k, l) - h(k, l) d(k, l)|^2 \]

\[+ \sum_{P_{k-1}} |z(k-1, l) - h(k-1, l) d(k-1, l)|^2 \] 　(4)
式で、\(\sum P_i \) は、\(d(k,l) \) がバイロットシンボルのときの合計で表している。\(x(k,l) \) は番目のOFDM信号の\(l \)番目の発送波に対応する受信信号である。

まず、パストを1と仮定した場合（\(N_p=1 \））の評価関数を
最小にするパストを探索し、それを第1パストの推定値とする。
推定されたパスト1の影響評価関数から差し引くことで、評価関数はその他のパストの影響のみを含んだものとなる。
その後は同じ処理を繰り返し、前もって想定したパストの数だけ推定を行う【1】。

3.2 MMSE型ICIキャンセラ

隣接 \(2q \) キャンセラの変容データシンボル \(x_i \) に重み付けし、新たに \(l \)番目のキャンセラに対する変容データシノポ
ル \(y_{li} \) を生成する。

\[
y_{li} = \sum_{i=-q}^{l+q} w_{li}x_i
\]

ここで、重み \(w_{li} \) は \(y_{li} \) と送信データシンボル \(d_i \) との平均
2乗誤差が最小になるように定め、最小値の関数条件を求
めるために、\(w_{li} \) 関数するとき、

\[
l+q \sum_{i=-q}^{l+q} w_{li}E[x_i^2] = E[x_i^2] (n = l - q, \ldots, l + q)
\]

と表すことができる。重み \(w_{li} \) を求めるための \(2q + 1 \) 元
意り立方程式は以下のようにある。

\[
R_i W_i^T = \sigma^2 H_i^T
\]

\[
W_i = (w_{li} \ldots, w_{li+q})^T, \quad H_i = \begin{bmatrix} h_{l-q,q} & \cdots & h_{l+q,q} & & & & \end{bmatrix}
\]

\[
R_i = \sum_{n=0}^{N-1} |h_{l-q,n}|^2 \cdots |h_{l+q,n}|^2 + 2\sigma^2q
\]

ただし、\(\sigma^2 \) は雑音の分散、\(\sigma^2 \) は信号の平均電力を表
わす。キャンセラ回路 \(R_i \) を生成する必要があるが、遠くのキャンセラからの干渉を無視することによって、式（8）の行
列の次元を、和の数を少なくして計算量を削減する。

4 シミュレーション結果

表1にシミュレーションで用いたパラメタを示す。図1に \(2 \) 波マルチパス環境下での平均CNRに対するビット
誤り率特性を示す、直線波に対する遅延波の遅延時間は
50ns、減衰量は5dBとしている。直線波と遅延波の正規化
周波数オフセットはそれぞれ0.2, -0.1と設定している。

では、ICIの除去を行わず従来の等化を行った場合の特
性、MMSE型のICIキャンセラを用いて、1セグメント
の信号を理想BPFで取り出し隣接2, 10, 20キャンセラから
の干渉を除去した場合の特性（提案1）、1セグメントの
隣接数キャンセラのデータを取り出し隣接2, 10, 20キャン
セラからの干渉を除去した場合の特性（提案2）、ドップ
ラースブレッドを0とした固定受信を想定した場合の特性
を示している。ただし、雑音の分散は既知としている。

表1 シミュレーションパラメタ

<table>
<thead>
<tr>
<th>モード</th>
<th>Mode3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ガードインターバル</td>
<td>1/2</td>
</tr>
<tr>
<td>1セグメントの変調方式</td>
<td>QPSK</td>
</tr>
<tr>
<td>その他のセグメントの変調方式</td>
<td>64QAM</td>
</tr>
<tr>
<td>搬送波周波数</td>
<td>600MHz</td>
</tr>
<tr>
<td>ICIキャンセラ</td>
<td>MMSE型</td>
</tr>
<tr>
<td>最大探索パスト数</td>
<td>10</td>
</tr>
<tr>
<td>スレートレベル</td>
<td>0.05</td>
</tr>
<tr>
<td>忘却係数</td>
<td>0.1</td>
</tr>
</tbody>
</table>

図1: 2波マルチパス環境下における平均CNRに対する
ビット誤り率特性

5 まとめ

本稿では、MMSE型のICIキャンセラを提案し、1セ
グメントISDB-Tについてその特性を示した。MMSE型
のICIキャンセラを用い、1セグメントの隣接数キャンセラ
のデータを取り出し隣接2, 10, 20キャンセラからの干渉
を除去した場合の特性がドップラースブレッドを0とした
固定受信に近い特性が得られることを示した。MMSE型
は計算量が大きくなるため、今後計算量の削減について検討
していく。

参考文献

【1】中村 充、伊丹 誠、伊藤 総二、Hamid Aghvami:
"OFDM受信における遅延プロファイルとドップラ
ープロファイルの推定によるキャンセラ干渉の除去"、映

東京理科大学 基礎工学部 電子応用工学科 伊丹研究室
〒 278-8510 千葉県野田市山崎 2641
Tel: 04-7124-1501(内線:4232)
E-mail: atkito@tith.te.noda.tus.ac.jp

NII-Electronic Library Service