高衛 BSデジタル放送用 LDPC符号特性に関する検討

A study on performances of Multi-level modulation schemes combined with LDPC codes for the advanced satellite broadcasting system

鈴木 陽一 橋本 明記 筋誠 久 田中 祥次 正源 和義
Yoichi SUZUKI Akinori HASHIMOTO Hisashi SUJJIKAI
Shoji TANAKA and Kazuyoshi SHOGEN
NHK 放送技術研究所
NHK Science & Technical Research Laboratories

Abstract NHK is studying the advanced satellite broadcasting system which the Integrated Services Digital Broadcasting for Satellite (ISDB-S) system was improved. This advanced system can make use of the hierarchal transmission scheme using Transmission and Multiplexing Configuration Control (TMCC) signal adopted by the ISDB-S system and its channel capacity can be increased by using multi-level modulation schemes combined with Low Density Parity Check (LDPC) codes. In this paper, we report the LDPC codes designed which are suitable for the transmission format of the advanced satellite broadcasting system and the computer simulation results of performances under the AWGN channel model.

1. はじめに

NHKでは現行のBSデジタル放送方式の機能を踏襲しつつ、現行方式以上の伝送容量の確保が可能な方式として、高衛 BSデジタル放送方式を提案している[1]。本方式は、現行 BSデジタル放送で用いられている TMCC(Transmission & Multiplexing Configuration Control)信号による伝送制御機構に加え、LDPC(Low Density Parity Check)符号[2]と多値振幅位相変調を組み合わせることで、現行 BSと比較し約30%の伝送容量の増加が可能となる方式である。本方式で採用するLDPC符号は線形ブロック符号の一種であり、0と1で構成される非常に簡単な検査行列と Sum-product復号法を組み合わせることでシャノン限界に迫る訂正能力が得られる。一方で、LDPC符号は符号化に用いる検査行列によって性能が左右されるため、高衛 BSデジタル放送伝送方式のシステムフォーマットに適した検査行列の設計が重要となる。今回、高衛 BSデジタル放送用 LDPC符号の設計および振幅位相変調を用いた場合の白色雑音下での伝送特性の計算機シミュレーションを行ったので結果を報告する。

2. 高衛 BSデジタル放送用 LDPC符号

2.1. 伝送方式の構成

高衛 BSデジタル放送伝送方式の構成を図1に示す。本方式は多重フレームが44880ビット長のスロット120本で構成され、各スロットはRをLDPC符号率とし、ヘッダ（176ビット）、データ（44880×R=3744ビット）、BCHバーチャ（192ビット）、スタッフビット（6ビット）、LDPCバーチャ（44880×（1-R）ビット）で構成される。制御信号については同期（2880ビット）、バイロット（3480〜19200ビット）、TMCC（31680ビット）で構成される。スロット長44880ビットはMPEG-TSの伝送を考慮した187byteの整数倍で構成されており、また、60で割り切ることからBPSK〜32APSKまで集合の取られたマッピングが可能である。

図1：高衛 BSデジタル放送伝送方式の構成[1]

2.2. LDPC符号の要求条件

高衛 BSデジタル放送の送り直し符号として現行方式に比べ符号化利得の向上が可能で複数の符号化率に柔軟に対応可能なLDPC符号を採用した。LDPC符号の要求条件として以下の項目が挙げられる。

・多重フレームのスロット長に適合

・ハードウェア化(符号演算の並列処理化等)が容易

以上の要求条件を満たすLDPC符号として、多重フレームのスロット長（44880ビット）と符号長を同じくし
た非正則LDPC符号を採用した。更に、検査行列の列方向に1を周的に配置した構造をとし、生成行列を計算せずに符号化が可能なLDGM（Low-Density Generation Matrix）構造を適用した。

2.3. LDPC符号検査行列の構成

LDPC符号検査行列の構成図を図2に示す。左側部分行列H_aは周期q=120×(1-R)で列方向に1を配置する周期構造であり、120×Rセットの部分行列で構成される。右側部分行列H_bはLDGM行列である。H_a内の各セットにおいて先頭列の1の位置は検査行列初期値テーブルから読み出され、各セット内の2列目から374列目列の位置は先頭列の位置を周期qずつシフトして決定する。

図2：高度BSデジタル放送用LDPC符号検査行列

今回新たに設計した11種類の検査行列においてはエラーフロアの要因となるサイクル4およびサイクル6がなるべく除去されるよう列位置を調整した。検査行列のパラメータ一覧を表1に示す。ここで検査行列に含まれるサイクル6の割合を式(1)で定義した。

サイクル6を構成する1が含まれる列の総数/44880 (1)

表1より全ての符号化率においてサイクル4が除去されており、またサイクル6も非常に低い割合となっていることがわかる。

表1：検査行列のパラメータ一覧

<table>
<thead>
<tr>
<th>標準</th>
<th>H_aの負荷</th>
<th>H_bの負荷</th>
<th>雲する符号化率</th>
<th>周期</th>
<th>関連</th>
<th>当期</th>
<th>雲する行列の数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td>12</td>
<td>6732</td>
<td>3</td>
<td>5610</td>
<td>5</td>
<td>0</td>
<td>67.5</td>
</tr>
<tr>
<td>1/3</td>
<td>9</td>
<td>7106</td>
<td>3</td>
<td>1228</td>
<td>5</td>
<td>0</td>
<td>64.17</td>
</tr>
<tr>
<td>2/5</td>
<td>7</td>
<td>1412</td>
<td>4</td>
<td>1645</td>
<td>5</td>
<td>0</td>
<td>58.33</td>
</tr>
<tr>
<td>1/2</td>
<td>7</td>
<td>6308</td>
<td>4</td>
<td>1645</td>
<td>5</td>
<td>0</td>
<td>64.17</td>
</tr>
<tr>
<td>2/3</td>
<td>10</td>
<td>5236</td>
<td>4</td>
<td>2206</td>
<td>10</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>3/4</td>
<td>12</td>
<td>6488</td>
<td>3</td>
<td>2506</td>
<td>9</td>
<td>0.83</td>
<td>99.16</td>
</tr>
<tr>
<td>4/5</td>
<td>14</td>
<td>6160</td>
<td>3</td>
<td>2767</td>
<td>12</td>
<td>0</td>
<td>1.67</td>
</tr>
<tr>
<td>5/6</td>
<td>16</td>
<td>6114</td>
<td>3</td>
<td>2216</td>
<td>16</td>
<td>0</td>
<td>1.67</td>
</tr>
<tr>
<td>7/8</td>
<td>20</td>
<td>1014</td>
<td>3</td>
<td>3360</td>
<td>20</td>
<td>0</td>
<td>11.87</td>
</tr>
<tr>
<td>9/10</td>
<td>22</td>
<td>5610</td>
<td>3</td>
<td>3360</td>
<td>22</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

3. 伝送特性

3.1. シミュレーション系統図

今回設計した11種類の検査行列と多値振幅値相変調を組み合わせた場合の白色雑音下におけるC/N対ビット誤り率特性の計算機シミュレーションを行った。シミュレーション系統図を図3に示す。

図3：シミュレーション系統図

3.2. C/N対ビット誤り率特性

図4にQPSK〜16QAMにおいてC/N対ビット誤り率特性を示す。図中の分数は変調方式における符号化率を示す。全ての符号化率においてLDPC符号特有の急峻な特性が得られていることがわかる。

4. まとめ

高度BSデジタル放送用LDPC符号を新規に11種類設計し、振幅値相変調を用いた場合の白色雑音下での伝送特性の計算機シミュレーションを行った。今後試作機能製作、性能確認および機能検証を行う予定である。

文 献

†NHK放送技術研究所（システム・衛星ネットワーク）
〒157-8510 東京都世田谷区駒沢一丁目1-10-11
TEL 03-5404-3441 E-mail: Suzuki-y.fw@nhk.or.jp