バイラテラル最小値/最大値フィルタによる水中写真の強調

Bilateral Minimum/Maximum Filters for Enhancing Underwater Photographs

Fuhui Wang Kohei Inoue Kiichi Urahama

九州大学大学院芸術工学研究院 コミュニケーションデザイン科学部
Department of Communication Design Science, Faculty of Design, Kyushu University

Abstract: We present a method for enhancing underwater photographs by extending an image dehazing method using bilateral minimum/maximum filters. A red component in an input image is brightened while its green and blue components are darkened. The contrast of images enhanced by our method is shown higher than those by other methods.

1 まえがき

バイラテラル最小値 (BiMin) フィルタとバイラテラル最大値 (BiMax) フィルタを用いて、霧などのヘイズを取り除く手法が提案されている [1, 2]。霧がかかった写真は白く（明るく）なっているので、霧を除去すると暗くなる。この手法をネガ画像に適用してから戻すると画像が明るくなる、露光不足が補正される。本稿では、この手法を水中写真の強調に応用する。水中では赤成分は減衰して暗くなり、緑青成分はヘイズにより明るくなる。そこで、赤成分には露光不足の補正をし、緑青成分はヘイズ除去する。

2 BiMin/BiMax フィルタ

モノクロ入力画像の画素 \(i, j \) の画素値を \(x_{ij} \) とすると BiMin フィルタの出力は

\[
Y_{ij} = \frac{1}{p \times q} \sum_{l=-p}^{p} \sum_{m=-q}^{q} W_{ijlm} x_{i+l,j+m}
\]

である [1]。ここで \(W_{ijlm} = e^{-\alpha (l^2 + m^2) - \beta (x_{i+l,j+m} - x_{i,j})} \) である。また、\(W_{ijlm} = e^{-\alpha (l^2 + m^2) - \beta (x_{i+l,j+m} - x_{i,j})} \) とした（以下の場合では \(\alpha = 0.01, \beta = 0.001, \gamma = 0.01 \) の \(\) BiMax フィルタである [2]。なお、以下では画素の座標 \(i, j \) は省略し、ベクトルは大文字でスカラは小文字で表す。

2.1 ヘイズ除去

写真での観測値 \(I = [r_i, g_i, b_i] \) は

\[
I = t I + (1 - t) A
\]

と表される。\(A = [r_A, g_A, b_A] \) は環境光の色、\(t \) は透過率である。式 (2) から物体色 \(J = [r_j, g_j, b_j] \) は

\[
J = (I - A)/t + A
\]

と求まる。これには \(A \) と \(t \) を入力 \(I \) から推定する必要がある。

ヘイズ除去では、最小値画像すなわち \(r_i, g_i, b_i \) の最小値のモノクロ画像に BiMin フィルタをかけた暗部画像 \(d \) と、\(r_i, g_i, b_i \) の最大値に BiMax フィルタをかけた明部画像 \(c \) を求め、\(r_A = g_A = b_A = c \) とし、Dark Channel Prior を式 (2) に適用した

\[
d = (1 - t) c
\]

から求めた \(t = 1 - d/c \) を式 (3) に代入して出力 \(J \) を求める [1]。\(J = t \) もと暗くなるので、これを暗部差分化し、\(t \) を求める。遮光不足補正では、ネガ画像を一旦ネガ反転（すなわち RGB→CMY）して暗部差分化した画像を再びネガ反転（CMY→RGB）して出力する。こうすると \(J \) もより暗くなる。これを暗部差分化し、\(t \)を求める。

3 水中写真の強調

上記の \(t \) は空中での透過率であり、\(r, g, b \) 成分とも同じとしている。しかし、水中の透過率は \(r, g, b \) で異なり、\(r \) は急激に減衰する。従って、水中写真は赤みが失われてしまうとなる。すなわち \(r \) 成分は露光不足状態になり、\(g, b \) 成分にはヘイズがかかる。\(r, g, b \) 成分の透過を精密にモデル化するのは煩雑なので、本稿では \(r \) 成分を暗部差分化し、\(g, b \) 成分を暗部差分化する。本提案法は、\(r \) 成分をネガ反転してシアン \(255 - r \) にするほかはヘイズ除去 [1, 2] と同じである。すなわち画像中の最も明るい色（今の場合、青）を環境光とし、\(t \) を推定し、透過率を求める。

3.1 環境光

\(255 - r_i \) に BiMax フィルタをかけた暗部画像 \(r \) の暗部画像のネガ）を \(e \) とし、\(g_i, b_i \) の最大値に BiMax フィルタをかけた \(g, b \) の明部画像を \(f \) とする。\(e + f \) の値が最大になる画像を画像のなかから選び出し、その画像での \(r_i, g_i, b_i \) を環境光 \(A = [r_A, g_A, b_A] \) とする。

3.2 透過率

\(r_i, g_i, b_i \) の最小値に BiMin フィルタをかけた出力のモノクロ画像 \(h \) とする。\(r \) 成分の透過率を

\[
t_r = 1 - \delta \text{min}(h, 255 - r_A)/\text{max}(h, 255 - r_A)
\]

NII-Electronic Library Service
とする．ここで δ は 0 以上 1 以下の係数である（以下実験では $\delta = 0.8$ とした）．また g 成分と b 成分の透過率を

$$t_g = t_b = 1 - \delta \min[h, \min(g_A, b_A)]/\max[h, \min(g_A, b_A)]$$

とする．

3.3 物体色

以上の環境光と透過率を

$$r_I = (r_I - r_A)/t_I + r_A$$

$$g_I = (g_I - g_A)/t_I + g_A$$

$$b_I = (b_I - b_A)/t_I + b_A$$

に代入して $J = [r_I, g_I, b_I]$ を出力する．

4 実験

6 枚の実験例を図 1 に示す．それぞれ左が入力画像，右が本提案法の出力である．赤みが戻ってコントラストが向上している．他の手法との比較を図 2 に示す．(a) が入力画像，(b) はヒストグラム均等化，(c) は Lu ら [3] の結果，(d) は Carlevaris-Bianco ら [4] の結果，(e) は Fatul [5] の結果，(f) が本提案法の結果である．本提案法では赤みを戻しており，コントラストも高い．図 1(e),(f) と図 2 の画像でのコントラスト値 (r, g, b) 各成分のコントラストの平均．各コントラストは 3 × 3 パッチ内の最大値と最小値の差と和の比の平均値を表 1 に示す（空欄では実験報告がない）．本提案法はコントラスト値も高い．

図 2 の画像での環境光の設定において，$f - e$ が最小になる画素を図 3(a) に赤で示す（この画素の色は $r_A = 25, g_A = 174, b_A = 254$ である）．また r 成分の透過率を図 3(b) に，g 成分と b 成分の透過率を図 3(c) に示す．

![実験例](image)

5 まとめ

入力画像の r 成分を明暗明かし，g, b 成分を暗視明かす水中写真強調法を提案した．環境光の設定法の改善が今後の課題である．

参考文献

<table>
<thead>
<tr>
<th>Table 1: コントラスト値</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
</tr>
<tr>
<td>plant</td>
</tr>
<tr>
<td>wreck</td>
</tr>
<tr>
<td>fish</td>
</tr>
</tbody>
</table>

九州大学 大学院工学研究科
〒815-8540 福岡市南区塩原 4-9-1

NII-Electronic Library Service