Role of Accommodation Mechanism in Perceiving Digital Halftone Still Images

Abstract The accommodation mechanism has been experimentally shown to function as a demodulator in perceiving digital-halftone still images. Stimuli used in the experiments consisted of digital-halftone sine-waves and numerical figures expressed by an error-diffusion method. The accommodative responses were measured with an infrared optometer while the subjects perceived the dot component or the signal component modulated by the dots. The following results were obtained: (1) the accommodation lag changes depending on which component is perceived, and increases more for the signal component perception than the dot component; (2) the accommodation lag when perceiving the signal component increases as the sine-wave’s spatial frequency decreases and the figure size enlarges; (3) as long as the viewing distance is over 1 diopter, it does not affect the above results. These results suggest that the change of accommodation lag, which corresponds to the bandwidth of low-pass filters, affects how digital-halftone images are perceived, i.e., that the accommodation mechanism can also play the role of the demodulator in human vision. Moreover, we clarified that the resting state of accommodation does not affect the accommodative responses to digital-halftone images.

1. まえがき

誤差拡散法やディザ法などにより変調された擬似中間調画像（変調画像）から、画像処理技術を用いて信号成分を検出（復調）する基本的手法は、信号成分の空間周波数に合わせた帯域幅を持つ低域通過フィルタを用いることである。では、視覚系が擬似中間調画像を観測した場合は、どのように処理されているのだろうか、視覚系では、見方により擬似中間調画像の画点をはっきり知覚することも、画点集合で表現された信号成分を知覚することも可能である。これは、視覚系にも復調機能が備わっており、その復調特性を適応的に変化させることにより画点と信号成分の知覚を区別している可能性が考えられる。視覚系において、復調特性を適応的に変化させることが可能な部位としては、脳内だけでなく焦点調節機構も候補に含まれと考えられる。それは、焦点調節機構が、提示画像までの視距離に応じて焦点調節特性を変化させるだけでなく、視距離一定でも提示画像の空間周波数が輝度値、視標の大きさなどの提示条件により異なる焦点調節状態を変化させているからである。すなわち、視距離一定における焦点調節状態の変化は網膜像のポケ量の変化と等価であり、これが、擬似中間調画像を観測する際の帯域幅可変低域通過フィルタとして機能していると推測される。しかし、このような推測は必ずしも実証されている訳ではなく、擬似中間調画像に対する焦点調節応答特性の実測例自体も見当たらない。このような推測の証拠は、擬似中間調画像知覚における焦点調節機構の役割を明確化するだけでなく、視覚系の画像処理様式を解明するという観点からも重要である。

上記観点より、本論文では、擬似中間調画像観測時に於ける視覚系の復調特性と焦点調節特性の関わりを検討する為に、擬似中間調画像に対する焦点調節応答を赤外線オプトメータを用いて実測し、画像知覚状態との関係を調べる。実験に用いた画像は、正弦波画像と数字画像を誤差拡散法により2値化した擬似中間調静止画像であり、画点と画点集合で表現された信号成分の各々に注意している最中の焦点調節応答を実測した。その結果、注意の切り替えに基づいて、異なる焦点調節誤差（網膜像
のポケ量であり、低域通過フィルタの帯域幅と等価）が
誘導されると同時に、異なる見え方（画点の知覚または
画点集合で表現される信号成分の知覚）が生じる結果と
なった。これは、焦点調節特性が視覚系の復調特性の一
部として関わっていることから、さらには、視覚系の中で焦
点調節機能が独立に機能するのではなく、脳内静止画像
処理機構とも何らかの関連性を保つながらも最適な焦点調
節状態を決定していることも示唆する。以下では、まず
実験システムと実験方法を述べる。次に、擬似中間調画
像の画点と画点集合で表現される信号成分の各々に注意
した際の焦点調節応答を、正弦波空間周波数と数字の大
きさおよび視距離をパラメータにして実測する。そして、
実測結果に基づき、視覚系の復調特性と焦点調節特性の
関わり、および調節安定性の特異性についても考察する。

2. 実験システムおよび実験方法

図1は、赤外線オプトメータ（ニック製社製Accom-
modometer, AA-2000）と外部視標提示装置を組合せた
焦点調節応答実験システムを示す。赤外線オプトメータ
は、近赤外光がハーフミラーを通じて被験者の眼に入
射した後、網膜で折射されて戻って来た近赤外光から
焦点調節値を導出する。外部視標提示装置は計算機とフ
レームメモリとCRT（1024×1024 pixels, frame rate
=60 Hz, non-interlace）ならびに、計算機で作成された
静止画像刺激から遠方フレームメモリに書き込まれた
後、CRTに出力される。CRTからの画像光は2枚の凸
レンズで構成されるBadal光学系を通過した後、平面鏡
とハーフミラーに反射されて被験者の眼に入射する。
Badal光学系により作り出された像（実際に観測する提
示画像）から被験者の眼までの距離を視距離（視標提示
距離）とする。瞳孔径を一定に保つために2枚の凸レンズ
の間（左側の第1凸レンズの焦点距離の位置）に直径
2 mmの人工瞳孔が配置されている。Badal光学系は、
視距離が変化しても提示画像の大きさ（画角）が一定に
保たれる光学系なので、他のパラメータに影響を与えず
に視距離のみを単独で変えることが可能となる。

実験に用いた画像は、空間周波数の異なる1次元正弦
波と大きさの異なる数字画像を、誤差拡散法により2
値化した擬似中間調静止画像である。正弦波空間周波数
は、0.14, 0.2, 0.3, 0.5, 0.7, 1.0, 1.4, 2.0, 3.0, 5.0 cd-
の10種類であり、2値化前の正弦波コントラストを0.2
（CRTの平均輝度は16.6 cd/m²）に設定した。数字画像
は、4種類の大きさ（210, 147, 84, 42 points）の全角
MS Gothicの「1」と「3」であり、2値化前の輝度レベル
は数字内が23、数字外が20であった。また、2値
化に用いた輝度レベルは0と80であった。図2は、擬似
中間調正弦波画像と擬似中間調数字画像の例である。提
示画像は、CRT中央の円形開口内（視角で9.6°）に提
示され、円形開口のエッジ部が焦点調節応答値に影響し
ないように、開口外郭から一定の幅（視角で0.6°）を
正弦波状にポリゴナした。同様の理由で中央視点も設けなかった。
被験者には、画点または画点集で表現された信号成分
に注意を集中するように指示し、注意している最中の焦
点調節応答値を上記実験システムを用いて測定した。実
験に先立ち、まず、CRTや液晶モニタの画素に注意
を集中すると、一つの画素の形が明確に知覚可能になるこ
とを体験させ、これと同じ要領で画点に注意するように
教示した。擬似中間調数字画像の信号成分に注意する場
合は、数字が認識できることも条件として、注意の切替
えに基づき焦点調節応答値が変化すれば、擬似中間調画像
の見え方を変化する可能性が考えられるようから、本実
験により焦点調節特性と復調特性の関連性の議論が可能
になると予想される。具体的には、視距離を4 diopeters
(25 cm)に固定し、正弦波空間周波数と数字の大きさを

図1 瞳の焦点調節応答実験システム
Schematic view of the experimental system for accommodative
response measurement.

図2 擬似中間調正弦波画像と擬似中間調数字画像の例
Examples of digital half-tone sine-waves and numerical figures
used in the experiment.
変化させた場合の焦點調節応答と、正弦波空間周波数と数字の大きさを固定し、視距離を変化させた場合の焦點調節応答を実測した。

実験は暗室内で単眼（他眼は閉じている）にて行い、焦點調節応答値は50 ～ 10秒間の実測データを単純加算平均して一つの測定値とし、これを基本的には10回繰り返した。眼球運動などによる実測結果が安定しなかった場合はデータとして採用しなかった。実測値は、視距離の逆数（diopter）として出力される。被験者は、正視の2名（S.T., S.S.で樫眼視力は1.5）と、乱視のない者2名（Y.S., K.K.で樫眼視力は0.7）である。近視であっても調節能力が少しなくてもその範囲内（調節可能範囲）で調節が変化できるので、実験目的の遂行には問題ないと判断した。

3. 焦點調節応答特性と画像復調特性

両点と点画で表わされた画像成分の各々に注意している最大の焦点調節応答を、正弦波空間周波数、数字の大きさ、視距離を変化させて実測し、復調特性との関わりを考察する。

3.1 擬似中間調正弦波画像に対する焦点調節応答特性

図3は、擬似中間調正弦波画像の正弦波空間周波数を変化させた場合の4名の焦點調節応答特性を表わす。図中白丸（⊙）は点画で表わされた正弦波信号成分に注意した場合、黑三角（▲）は正弦波パターンの明るい部分または暗い部分に有する点画に注意した場合であり、実線は各々の実測結果の平均値である。ただし、視距離は4 diopters、図3(a)(b)が正常視被検者、(c)(d)が近視被検者であり、実測結果が異なるものを避けるため、点画に注意した場合（▲）の実測結果を少しずらして表示した。図3から以下の結果が得られた。

(1) 被験者によらず、点画と点画で表わされた正弦波信号成分のどちらに注意するかに依存して異なる焦点調節状態が誘導され、画点集合で表わされた正弦波信号成分に注意する場合の焦点調節応答値の方が画点に注意するよりも減少した（より速く、注視する方向への変化）。両実測結果に有意差が存在することは、有意水準 5％のt検定により確認された。

(2) 画点に注意した場合の焦点調節応答値は、正弦波空間周波数に関係なく一様値であった。

(3) 画点集合で表わされた正弦波信号成分に注意した場合、正弦波空間周波数の低下に伴い焦點調節応答値は減少傾向を示した。

結果(1)から、視距離一定かつ同一画像でも、注意する画像成分（画点または画点集合で表わされた正弦波信号）に依存して異なる焦点調節状態が誘導されるという対応関係の存在が示唆できる。これは、焦点調節機構が視覚系の中で独立に機能するのではなく、注意機構を含む脳内静止画像処理機構と何らかの関連性（協調関係）を保ちながら機能することを意味すると考えられる。結果(3)は、正弦波信号成分に注意した場合、空間周波数の低下に伴い焦点調節応答値が遠方へシフトするという両機構の協調特性を示している。視距離一定かつ同一画像でも、注意の向け方に依存して異なる焦点調節状態が誘導されるという特性は、現在複数の運動成分からなる多重運動画像に対して実測されてきた[19]が、擬似中間調画像のように複数の画像成分からなる静止画像に対しても、同様に成立することが本実験結果から明らかになった。静止画像に関しては、遠近感の異なる画像成分を含む静止画像に対しても実測されている[20]であることから、本実験結果のように心理的要因以外で複数の焦点調節状態が存在する例は他には見当たらない。

図4は、視距離を変えても擬似中間調正弦波画像を観測した場合の焦点調節応答特性 ((a)(b))は正常視被検者、(c)(d)は近視被検者。
図4 繰返し中間調正弦波画像に対する視距離と焦点調節応答値の関係
Accommodative responses to digital half-tone sine-waves as a function of viewing distance.

(c) (d) は近視被検者を表す。図中白丸（○）と黒丸（●）は、各々画点集合で表現された0.3 cpdの正弦波画像成分と画点に注意した場合であり、ハッテケ線と細実線は各々の実測結果の平均値である。白三角（△）と黒三角（▲）は、各々画点集合で表現された2.0 cpdの正弦波画像成分と画点に注意した場合であり、太実線と細実線は各々の実測結果の平均値である。実測結果の重なりを避けるため、4種類の実測結果を少しふらせて表示した。また、斜め45度の破線は各視距離における理想的な焦点調節応答値を表す参照線である。まず第1に図4から分かるように、視距離約1 diopre 以下における正

視被検者と近視被検者の焦点調節特性の違いであり、前者は参照線に沿って焦點調節値が減少するのに対し、後者は参照線に沿って焦點調節値を減少させることができなかった。これは、提示刺激が近視被検者の調節可能範囲を越えたためである。また、被検者の報告からも、正

視被検者は視距離約1 diopre以下でも視標を正しく知覚できたと報告した。したがって、近視被検者が視標を明確に知覚できる視距離範囲は、すなわち調節可能範囲において図4から以下のことがわかった。

(1) 正視被検者S.S.の0.5 diopre以上と近視被検者T.S.の1 diopre以上の視距離および近視被検者の中間調節範囲では、画点集合で表現された正

弦波画像成分に注意する場合の焦点調節応答値の方が、画点に注意する場合よりも小さくなるという特性は視距離に影響されなかった。両実測結果

に有意差が存在することは、有意水準5％のt検定により確認された。しかし、正視被検者のそれ以外の視距離では、両実測結果の有意差は確認できなかった。

(2) 正視被検者の2 diopre以上の視距離および近

視被検者の調節可能範囲では、空間周波数の低い正弦波画像成分に注意する場合の焦点調節応答値の方が、空間周波数の高い正弦波画像成分に注意する場合よりも小さいという特性は視距離に依存しなかった。両実測結果に有意差が存在することは、有意水準5％のt検定により確認された。しかし、正視被検者のこれ以外の視距離では、両

実測結果の有意差は確認できなかった。

(3) 視距離の増加に伴い焦点調節応答値の差が縮

小する傾向であった。

以上は1 diopreを越える視距離では、図3の焦点調節

応答特性が視距離に関係なく成立することを示している。

1 diopreよりも小さい視距離において実測結果の有

意差がt検定で確認されられなかったのは、結果(3)の影響

が原因の一つと考えられる。すなわち1 diopreよりも

小さい視距離では、焦点調節応答値の差が本質的に少

なくなるため、実測結果の有意差の検証が困難になったと考えられる。

3.2 擬似中間調数字画像に対する焦点調節応答特性

図5は、擬似中間調数字画像の数字の大きさを変化させ

させた場合の4名の焦点調節応答特性である。図中の白丸

（○）と白三角（△）は、各々擬似中間調数字画像「1」

の数字画像成分と画点に注意した場合、黒丸（●）と黒

三角（▲）は、各々擬似中間調数字画像「3」の数字画

像成分と画点に注意した場合の焦点調節応答値であり、ハッテケ線と細実線は各々の実測結果の平均値である。た

だし、視距離は4 diopre、図5(a)(b)が正視被検者、

(c)(d)が近視被検者であり、実測結果の重なりを避ける

ため4種類の実測結果を少しふらせて表示した。図5か

ら以下のが得られた。

(1) 被検者によらず、画点と画点集合で表現された

数字画像成分のどちらに注意するかに依存して異なる焦点調節状態が誘導され、画点集合で表現さ
208 (82)

図5 諦似中間調数字画像の大きさと焦点調節応答値の関係（視距離：4 dipters）
Relation between numerical figure sizes and accommodative responses to digital half-tone numerical figures at a distance of 4 dipters.

図6 諦似中間調数字画像に対する視距離と焦点調節応答値の関係
Accommodative responses to digital half-tone numerical figures as a function of viewing distance.

れた数字画像成分に注意する場合の焦点調節応答
値の方が、画点に注意するより減少した（より
速くを突視する方向への変化）。両実測結果に有意
差が存在することは、有意水準 5% の t 検定に
より確認された。
（2）画点に注意した場合の焦点調節応答値は、数字
の大きさに関係なく一定値であった。
（3）画点集合で表現された数字画像成分に注意した
場合、数字が大きくなるに伴い焦点調節応答値は
減少傾向を示した。
（4）上記特性は、数字の種類に依存しなかった。
結果 (1) は、視距離一定かつ同一画像でも、注意する画
像成分（画点または画点集合で表現された数字画像成分）
に依存して異なる焦点調節状態が誘導されるという対応
関係の存在を意味し、焦点調節機能と注意機能を含む脳
内静止画像処理機構の何らかの関連性（協調関係）を示
すと考えられ、これは、擬似中間調正弦波画像の場合と
同様である。結果 (3) は、数字画像成分に注意した場合、
数字の拡大に伴い焦点調節応答値が遠方へシフトすると
いう機能の協調特性を示している。数字の拡大は、周
波数構造を低域周波数領域に集中させる効果を持つこと
から、数字の大きさ変化と空間周波数の変化は、ほぼ等
価の意味を持つのと見なせる。したがって、数字の大きさ
変化を空間周波数変化に置き換えれば、図5の焦点調節
応答特性は図3と基本的には同じ特性と解釈される。
図6は、視距離を変えて擬似中間調数字画像（210
points）を観測した場合の焦点調節応答 (a)(b) は正視
被験者、(c)(d) は近視被験者を表す。図中白丸（○）
と白三角（△）は、各々擬似中間調数字画像「1」の数
字画像成分と画点に注意した場合、黒丸（●）と黒三角
（▲）は、各々擬似中間調数字画像「3」の数字画像成分
と画点に注意した場合の焦点調節応答値であり、ハッチ
線と繊実線は各々の実測結果の平均値である。また、斜
め45度の破線は各視距離における理想的な焦点調節応
答値を表す参照線である。同様に、実測結果が重なるのを避けるため、4種類の実測結果を少しずらして表示した。図6から、視距離の1diopeter以下における正視被験者と近視被験者の焦點調節特性は異なり生じるが、これは図4と同様に、提示刺激が近視被験者の調節可能範囲を超えると視標が明確に知覚できなくなったためである。したがって、被験者が視標を明確に知覚可能な視距離範囲、すなわち調節可能範囲において図6から以下のことがわかった。

（1） 正視被験者S.S. の全視距離と正視被験者T.S. の1diopeter以上の視距離および近視被験者の調節可能範囲では、観点集で表現された数字画像成分に注意する場合の焦點調節応答値の方が、観点に注意する場合より小さくなるという特性は視距離に影響されなかった。両実測結果に有意差が存在することは、有意水準5%のt検定により確認された。しかし、正視被験者T.S. の1diopeter未満の視距離では、両実測結果の有意差は確認できなかった。

（2） 視距離の増加に伴い焦點調節応答値の差が縮小する傾向であった。

以上は、少なくとも1diopeter以上の視距離では、図5の焦點調節特性能が視距離に関係なく成立することを示している。正視被験者T.S. の1diopeter未満の視距離において実測結果の有意差がt検定で確認されなかったのは、図4の場合と同様に、1diopeter未満の視距離における焦點調節応答値の差の本質的な縮小が原因の一つと考えられる。

3.3 網膜像のボケ特性と画像復調特性

上記実測結果から、視距離一定でも、どのような成分に注意するかに依存して焦點調節状態が変化することが示された。一定視距離における焦點調節状態の変化は、焦點調節誤差（網膜像のボケ量）の変化を意味するので、この結果は、注意する画像成分に依存して網膜像のボケ量が変化することを示す。さらに、観点に注意する場合の焦點調節応答値の方が提示画像の視距離（4 diopeters）に近いことから（図3と5の結果（1））、観点に注意する場合の焦點調節応答値の方が、観点集で表現された正弦信号成分や数字画像成分に注意する場合よりも合焦状態に近く、網膜像のボケ量が少ないことが示される。注意する画像成分に依存した網膜像のボケ量の変化は、網膜像の質の変化を意味する。脳内では、この質の異なる網膜像を用いて画像の知覚・認識がなされるが、結論は、注意する画像成分に依存して網膜像の見え方が（画像知覚状態）が変化することを予想される。そこで、擬似中間調画像に対する被験者4人の見える方を実験で確認したところ、以下の如く解析された。

（1） 視点に注意した場合、視点の形は明確かつ安定に知覚可能であった。これは、網膜像のボケが減少しているためである。一方、正弦波信号成分や数字画像成分の知覚・認識は明確であり、特に、数字画像成分の場合には知覚できない場合も生じた。この明確さを失くすために、正弦波信号成分や数字画像成分に注意を移動させると、下記（2）の見回りに変化した。これは、観点への注意動作が、観点集で表現された信号成分の知覚・認識には適さず、観点の知覚に適することを意味し、観点知覚状態に関わることである。

（2） 視点集で表現された信号成分に注意した場合、正弦波信号成分や数字画像成分の安定な知覚・認識が可能であった。一方、観点の形の知覚は明確ではなかった。これは、網膜像のボケが増加しているためである。観点の形を明確に知覚するためには、観点に注意を移動させると、上記（1）の見方により変化した。これは、観点集で表現された信号成分への注意動作が、観点の知覚には適さず、観点集で表現された信号成分の知覚・認識に適することを意味し、信号成分知覚状態に変えることである。より、注意する画像成分に依存して網膜像のボケ量が減少すると同時に、画像の見え方が変化するという上記予想は裏付かれたと言える。したがって、観点の明確かつ安定な知覚には網膜像のボケ量を減少させ、正弦波信号成分や数字画像成分の安定な知覚・認識には網膜像のボケ量が増加させるという焦點調節応答と画像知覚状態の対応関係が存在し得る。これは、空間周波数の高い画像をはっきりと知覚・認識するためには、焦點調節応答値をより合焦状態に近づけ、網膜像のボケ量を減少させることが基本的に必要であるという経験則とも一致する。また、図3、5の結果（3）から、観点集で表現された信号成分に注意した場合、すなわち、正弦波信号成分や数字画像成分の知覚・認識する場合、正弦波信号成分の空間周波数の下、および、数字画像成分の数の拡大と併に網膜像のボケ量が増加すると結論できる。一方、図4、6の視距離依存特性では、焦點調節応答値が斜め45度の参照線に近いほど網膜像のボケ量は減少することを示す。この判断に基づき、有意水準5％のt検定により、観点と観点集による信号成分の各々に注意した場合の焦點調節応答値間に有意差が確認でき、た視距離間では、観点を明確に知覚する場合の焦點調節応答値の方が正弦波信号成分や数字画像成分知覚・認識の場合よりも参照線に近く、網膜像のボケ量が減少すると結論できる。

以上の考察から、画像知覚状態の変化に対し異なる網膜像のボケ量が対応するという関係が明確になった。網膜像のボケは眼周光学系により生じ、この眼周光学系の紡績特性は低域通過フィルタ特性として表現可能であることがから、網膜像のボケ量の変化は、眼周光学系低域通過フィルタの帯域幅の変化と等価と見なせる、すなわ
ち、視覚系では、眼球光学系低域通過フィルタの帯域幅を変化させることにより擬似中間調画像の画点と信号成分の知覚を区別している可能性が考えられる。これは、焦点調節機能が視覚系の画像復調特性としての役割も果たしている可能性を示唆する。図7 (a)(b) は、各誤差拡散正弦波画像の2次元パワースペクトラルと破壊で示した1ライン分のみを取り出した1次元パワースペクトルを表す。また、図7 (b) には、帯域幅の異なる2種類の低域通過フィルタの特性の概要（L1：狭帯域、L2：広帯域）も重ねて表示した。図7からわかるように、誤差拡散正弦波画像は、正弦波信号成分とそれ以外の成分（搬送波と帯域波）からなり、したがって、視覚系が誤差拡散正弦波画像を観測する場合、眼球光学系低域通過フィルタの帯域幅が低域通過フィルタ L1 のように狭くなれば（開始像のボケ量が大）正弦波信号成分が知覚され易くなり、逆に帯域幅が低域通過フィルタ L2 のように広くなった（開始像のボケ量が小）搬送波や帯域波まで検出可能となり、画点が知覚され易くなるという画像復調機構が考えられる。視覚系の画像復調機能の所在に関しては、脳内の静止画像処理機構、例えば、パークチャネル理論（並列狭帯域フィルタ構造）が検討も図示されが、本実験結果は、焦点調節機能のポケ特性が画像復調特性としての一端を担っている可能性も十分考えられることを示唆している。脳内の静止画像処理機構に際しては、画像復調機能が存在するか、もし存在するとしたら、焦点調節機能の画像復調機能との関係が図示されているかという問題も生じるが、これに関しては今後の課題である。

4. 考 察

3. の実験結果に基づき、焦点調節機能と脳内静止画像処理機構の関連性（協調特性）と視距離依存特性における調節安定度の特異性についてさらに考察する。

4.1 焦点調節機構と脳内静止画像処理機構の関連性

3. の擬似中間調画像に対する焦点調節応答特性の実測結果から、被験者に関係なく、視距離一定かつ同一画像であるか、画点知覚と画点集和で表現された正弦信号成分または数字画像成分の知覚・認識に対して、各々異なる焦点調節状態が誘導されるという対応関係が存在し、注意動作によりこの対応関係が切り替わることが示された。これは、以下の二つを意味すると考えられる。

（1）焦点調節状態が異なる場合、網膜像の質（ポケの程度）が変化する。脳内静止画像処理機構では、この質の異なる網膜像を解析することになるため、異なる画像知覚が生じると考えられる。これは、焦点調節機能が網膜像の質を通して静止画像処理機構に影響を及ぼすことを意味すると解釈できる。

（2）実験結果では、注意動作の切り替えによる焦点調節状態が変化した。これは、一方の画像成分を検出した静止画像処理機構が、注意動作の切り替えにより他方の画像成分を検出しようとする際、画像成分が検出により適した焦点調節状態となるように焦点調節機構へフィードバックをかけること、すなわち、静止画像処理機構が焦点調節機構に影響を及ぼすことを意味すると解釈できる。

したがって、この対応関係は、焦点調節機能と脳内静止画像処理機構が各々独立に機能するのではなく、両者が関連性（協調動作）を持って互いに影響を及ぼし合うことを意味するとして考えられる。さらに、図4、6の結果から、視距離が変化しても基本的には両機能は協調動作可能であることも結論される。従来研究では、焦点調節機能と脳内運動検出機能間の関連性の存在が既に示唆されているが、本実験結果は、焦点調節機能と静止画像処理機能間にも同様の関連性が存在することを示唆する。これは、視覚情報処理機構の解明に、脳内静止画像処理機構だけではなく、焦点調節機能も含めた協調システムという立場で取組むことも必要であることを示唆する。

4.2 調節安定度の特異性

視距離依存特性に於ける調節安定性（調節制世がない場合の焦点調節状態の安定点）の特異性の現れ方について考察する。焦点調節応答視距離依存特性に関する従来知見では、空間周波数の低い画像に対する焦腺調節応答値は空間周波数が高いく图像に対するよりも調節安定性に近づく方向に変化するとされている。すなわち、図8の焦点調節応答視距離依存特性の図示に示したように、空間周波数の低い画像に対する焦腺調節応答値は、調節安定性を増し、視距離が遠い場合は空間周波数の高い画像に対する焦腺調節応答値より大きくなり、視距離が近い場合は逆に値が小さくなり、調節安定性は一種の特異点のように機能する。これに対し図4、6では、焦腺調節応答値と視距離の関係が調節安定度で交差するという明確な特徴は見られず、明らかに従来知見とは異なる結果であることがわかる。

そこで、従来知見との違いの原因を検討するため、2
図8 従来知見に基づく焦点調節応答視距離依存特性の概略図
Outline of the conventional relation between accommodative responses and viewing distances.

図9 連続階調正弦波像に対する視距離依存特性（a）（b）は正規視被者を表す。図中白丸（○）と黒丸（●）は、各々0.5 cpdと7.0 cpdの単一正弦波に対する焦点調節応答値であり、ハッチ線と細実線は各々の実測結果の平均値である。実測結果が重なるのを避けるため、実測結果を少しづつして表示した。斜め45度の破線は参照線である。図から、視距離が近い場合、0.5 cpdの単一正弦波に対する焦点調節応答値の方が7.0 cpdの単一正弦波に対するよりも小さな值となるが、視距離が遠くなると逆に大きな値に切り替わり（参照線との交点が調節安座位に対応）、従来知見(23)(12)(14)と同様に、2種類の焦点調節応答値の大きさ関係が調節安座位を境にして逆転することが確認された。両実測結果に有意差が存在することは、有意水準5％の1検定によく確認された。したがって、調節安座位で明確な交差が起こらないという図4、6の結果は、擬似中間調画像に特有の性質であり、同時に存在する複数の画像成分（画面と画面集合により表現され信号成分を別々に注意したことに因って生じたものと判断できる。すなわち、調節安座位は単一調節応答が存在しない場合や単一空間周波数の正弦波画像を観察する場合には現れる安定点・特異点であって、擬似中間調画像のように複数の画像成分が存在する場合には、特にその特異点としての影響を考慮する必要はないと考えられる。我々が通常見る静止画像（一般静止画像）には、注意を向けるべき画像成分が複数含まれている場合が多いので、一般静止画像に対する焦点調節機械の動作様式は、擬似中間調画像に対する動作様式に類似したものになると予想される。

図10は、連続階調正弦波像に対する焦点調節応答の視距離依存特性（a）（b）は正規視被者を表す。図中白丸（○）と黒丸（●）は、各々210 pointsの大きさの数字「1」と「3」に対する焦点調節応答値、白三角（△）と黒三角（▲）は、各々42 pointsの大きさの数字「1」と「3」に対する焦点調節応答値、ハッチ線と細実線は各々の実測結果の平均値である。実測結果の重なりを避けるため、実測結果を少しづつして表示した。また、斜め45度の破線は参照線である。図から、正規視被者S.S.では、視距離が近い場合は210 pointsの数字に対する焦点調節応答値の方が42 pointsの数字に対するよりも小さな値になり、視距離が遠くなると逆に大きな値に切り
替われる傾向が現れたが、連続調節正弦波（図9）ほど明確ではなかった。ただし、両実測結果の有意差は、視距離2 diopeters 以外に有意水準 5% の t 検定により確認された。視距離 2 diopeters で有意差が確認できなかったのは、この視距離が調節安静位に近いため、両実測値が接近してしまったことが原因と考えられる。一方、正規被験者 T.S. では、2 種類の焦点調節応答値の逆転現象は明確ではなく、有意水準 5% の t 検定でも、視距離 1 diopeter 以下の有意差は認められなかった。連続調節数数字画像に含まれる画像成分は一つ（数字成分）なので、図9の結果から類推すれば、焦点調節応答値の逆転現象発生の可能性が予想されるが、実際には逆転現象は現れなかった。連続調節正弦波の場合と比較して逆転現象が現れにくかった理由は、正弦波画像は単一空間周波数であったのに対し、数数字画像は多くの空間周波数を含んでいるので、空間周波数構造には擬似中間調節波像や一般画像波像による逆転光像であったためと推察される。この点に関しては、被験者を増やしたり、提示画像の種類を変えるなど、さらなる実験が必要であろう。例えば、白抜きの十字図形（長さは視角で約 90°）を観測した場合の焦点調節応答値は、視距離とは無関係に、常に視野位置に相当する diopeter 値よりも小さくなる特异性（遠方シフト）が既に実証されている 21）。この実験では、白抜きの十字図形の大きさを変化させた実験は行われていないので、今までは調節安静位の特異性の現れ方の検討はできないが、そのような実験を追加し、調節安静位での交叉の有無を調べれば、別の角度から調節安静位の特異性の現れ方が検証可能になると予想される。

5．むすび

擬似中間調節観察時における視覚系の復調特性と焦点調節特性的関わりを検討するために、擬似中間調節正弦波画像と擬似中間調節波像に対する焦点調節応答特性を赤外線オプトメディアを用いて実測し、画像知覚状態（画面知覚又は画面集合で表現された信号成分知覚）との関係を調べた。その結果、以下の関係が明らかとなった。

(1) 注意する画像成分に依存して異なる焦点調節誤差（網膜像のポケ）が誘導されると同時に、異なる画像知覚状態（画面知覚又は画面集合で表現された信号成分知覚）が生じ、信号成分知覚の方が画面知覚よりも焦点調節誤差が増加する。

(2) 信号成分知覚の場合、正弦波空間周波数の低下または数字の拡大に伴い焦点調節誤差が増加する。

(3) 少なくとも 1 diopeter を越える視距離では、複数の焦点調節応答値の大小関係が視距離に関係なく同一に保たれる。

以上は、視覚系が、焦点調節誤差の大きさ（眼球光学系低域通過フィルタ特性の帯域幅と等価）を変化させることにより擬似中間調節像の画点と信号成分の知覚を区別している可能性、すなわち、焦点調節機構が視覚系の画像復調機能の一端を担っていること、および、焦点調節機構と脳内静止画像処理機能が互いに関連しながら最適な焦点調節状態を決定していることを示唆する。さらに、擬似中間調画像を観測する場合には、調節安静位の特異点としての特徴が現れないとも明確化した。液晶やプラズマなどの平面ディスプレイ的基本的な変換画像であり、本論の議論がそのまま成立すると予想されるので、今後は、画像構造が目立つ鮮やかなディスプレイなどの平面ディスプレイの評価に、焦点調節応答の観点を導入する可能性も検討する。

【文献】
1) 笠井健、藤井克彦、関口常、藤原恵：“視の焦点調節におけるポケ処理のメカニズム”、信学論、57-D，5，pp.391-398（1974）
6) 武田常彦、飯田健太、福本幸彦：“暗中環境における累加点の大きさ変化に対する眼の焦点調節応答特性”, 明眼誌, 47, 9, pp.1246-1252（1993）
9) 松本道一: “多波長レンズ刺激に対する焦点調節機能と運動検出機能の協調特性”, 明眼学誌, 55, 11, pp.1460-1466（2001）
10) 松本道一: “多波長レンズ刺激に対する焦点調節機能と運動検出機能の協調特性”, 明眼学誌, 59, 9, pp.1343-1351（2005）
14) 篠田一彦: “調節機関の機能の解析”, あたらしい眼科, 4, 4, pp.491-497（1987）
15) 笠井健、遠藤勝也、関口常、藤井克彦: “限界の焦点調節における波長差の影響”, 日本ME学会誌, 1, 1, pp.28-36（1971）