TF-12 AH スーパー・ターン
スタイル・アンテナの調整と組立（その2）

測 定

測定は地上における測定（コンパニオン・テイエの
入口）と、鉄塔に設けてからの測定（ガス・ストップ
より）とに分けて行った。最終的には、S. W. R. 1.1 以
内が得られることがある。

1. S. W. R. の測定

SWR の測定には次の三つの方法がある。
a）スロットラインによる方法

機械的にも電気的にも精密に作られた同軸線路の表面の一部に、第12図に示すとく軸と平行に溝をかいて、
適当な探針と検波器を使用すると、電圧在波曲線を描
くことができる。

この場合、インピーダンスの不整合による反射係数 \(r \)

\[
r = \frac{Z_0 - Z}{Z_0 + Z} = \frac{E_{\text{max}} - E_{\text{min}}}{E_{\text{max}} + E_{\text{min}}}
\]

で、V. S. W. R（電圧在波波比）は

\[
V. S. W. R = \frac{E_{\text{max}}}{E_{\text{min}}} = \frac{Z_0}{Z_a} = \frac{1 + |r|}{1 - |r|}
\]

で表わされる。

この方法は測定用に使う開溝同軸線路の精度によって、
測定可能な S. W. R. の限界値が決まるが、現在のと
ころ、1.02 までの絶対値の測定が可能である。
b）インピーダンスの測定による方法

超短波アドミタンス・ブリッジを使用して、抵抗分 \(R \) とリアクタンス分 \(jX \) を測定して、S. W. R. を計算
する。

この方法は不都合、ブリッジの精度によって測定精度が
決まるが、S. W. R. 1.0 の測定も可能である。
c）超短波挿引反射計による方法

この挿引反射計による測定原理を第13図に、反射計の
ブロックダイアグラムを第14図に示す。

超短波挿引発振器（\(\nu \) としては日本の TV チャン
ネルの中心周波数をとっている）の出力の一部を、約1
MHz の遅延回路（ケーブルを使用した）を通して被測定
物に与えると、インピーダンスの不整合を主にした反射波の
量が、遅延回路を往復しただけの時間遅れをもって入力
側に見われ、それが挿引発振器の出力と検出して、
検波器を通じた図のごとくオシロプログラフ上に、その波
形振巾は観測できる。

標準波形振巾として、予め挿引抵抗の 51.5Ω（S. W. R.
1.0）と、57Ω（S. W. R. 1.1）での振巾を測定しておい
て、そのままの状態で、或る負荷に接続すると、観測し
た波形の振巾から、S. W. R. 1.0 ～1.1 以内の相対値を
測定することができる。
この測定法の欠点は、S.W.R. の絶対値を正確には出し得ないことであるが、測定が簡単であるので、非常にの場合に手早く測定できる利点がある。

2. 絶縁抵抗の測定
1000Vメーターを使用して、絶縁抵抗を測定する。

3. 直流抵抗の測定
0.001Ω を測定出来るような測定器、例えば、ホイストン・ブリッジ、又はケルビン・ダブル・ブリッジ等を使用する。
この場合、電気線の直流抵抗は、1本当り 0.01～0.15Ω で、各ジャンクション・ボックスに 12 本並列につながれているから、1本の伝送線に 24 本並列接続されており、その合成直流抵抗は、0.001Ω 以下となる。また伝送線（3分間、ステアライト）を接続した場合は、100 呪毎に 0.009Ω を加える。
この直流抵抗が標準より大きい値を示した場合は、接続が不完全であるから良く調査しなければならない。
伝送線設置後、この抵抗値を定期的に測定しておくと、災害を未然に防止できる。

4. 測定結果
a）地上における測定
組立を予め地上 5m（約 3 波長）で行ったため、そのままにアンテナを回転させながら測定を行った。
i）絶縁抵抗
絶縁のジャンクションを全部取り外して、コンパイニング・ネットワークの入口から 1,000Vメーターで測定し

写真15 (a) 標準抵抗（S.W.R. 1.2）による波形

写真15 (b) 標準抵抗（S.W.R. 1.1）による波形

写真15 (c) E-W 側の波形（S.W.R. <1.1）

写真15 (d) N-S 側の波形（S.W.R. <1.1）

たが、N-S、E-W 共、200,000 MΩ 以上であった。
ii）直流抵抗
コンパイニング・ネットワークの入口から、ケルビンダブルブリッジ（測定範囲 0.0001～11Ω）を用いて測定を行ったが殆ど 0 に近く測定不能のため、電流線 48 個に就いて、抵抗値を接続したまま 1本宛測定したが、0.01Ω を超えたものが数本あったので、電流部を再

第15回 地上におけるS.W.R（コンパイニング・ネイより）

第16回 アンテナ設置後のS.W.R（ガス・ストップより）
イニング・ネットワークを接続して、N－S と E－W を
を掃除反射計、及びアドミッタシス・ブリッジにて検定
を行った。（写真 15、および第 15 図）、参考までに幅
射体が地面に平行におかれた場合の S.W.R. を写真16
に示す。

b) アンテナ設置後の測定
アンテナを組立てたまでで、地上150m の電塔上に標
えつけて、伝送線を 184m 接続して、送信機室内全
部から最終測定を行った、伝送線敷設の途中、2か所において
掃除反射計にて S.W.R. のチェックをも併せて行った。

i) 絶縁抵抗
高所に登って 48 コのジャンパーを取外すことは危険
でもあり、またジャンパーが変形する恐れもあるので省
略し、代わりに伝送線を敷設前に月月に点検した。

ii) S.W.R.
内部導体と外部導体間の直流抵抗は、184m の伝送線
を使用した場合は、計算によると 0.05469 Ω であるが、
測定した結果は、E－W が 0.0549 Ω、N－S は 0.0538
Ω で、E－W かやや大きい値を示したが、伝送線のフ
ランジ部の再線付にも拘わらず、この抵抗値は変化しな
かったので、この値をそのまま採用した。

テレビ操作所における信号切換
Switching at TV Operating Centers
by A.L. Stillwell. A.D. Fowler
(Bell Lab. Recod, Oct. 1956 p 366-369)

Bell System にて作られた ビデ
オ信号切換器である。各市の他局プ
ロを受け入れ、それを可否に各局に
分配するための切換は、もとバッ
チングコードで行っていたのが現在プ
ログラムが複雑になるにつけ、操作
が容易迅速な切換器を必要とする、
切換は遠隔制御で行い、切換器の数
は入力と出力の倍だけ必要で、操作
所（TOC）のものは 30×36 個であ
る。局波帯数域は、劇場テレビ用な

第1図 新切換方式の原理図(2×2)