1. 高密度固体撮像技術の動向

1. まえがき

この数年間の撮像デバイスの発展には目を張るものがある。なかでも固体撮像素子は多くのビデオカメラに使われる。非常に身近なものとなってきた。また、ファクシミリを代表とする各種のOA機器やカメラ、画像計測、産業用カメラ等、多くの分野の画像入力デバイスとして、さらには小型・高信頼性の特徴を生かして電子カメラ、医療等への応用も広がってきた。

このように応用分野の広がりに伴って、より高い解像度が要求されるようになった。その結果、例えばVTR一体型カメラにおいては、水平解像度330～380TV本の25～27万画素から430TV本以上のS-VHS向けの33～38万画素に需要の中心が移り、画素数の多い固体撮像素子の実用化を促した。

また、電子スチールカメラで代表される静止画の分野では、一定の画質を得ることに動画画面上の画質に高い分解能が必要とされ、50万画素の像素数必要との声もある。現状では画質プリント技術の進歩により、画質の制限は撮像素子の解像度で決まることが多い。

一方、これらの撮像デバイスで扱われる信号は、テレビ画面上に再生できることが応用上必要である。したがって、1画面を送る速度はNTSC方式に合致していることが必要である。このため、画素数の増加は必然的に大きな課題を要求する。さらに、装置の低価格化や消費電力の低減、機動性の面からは光学系とならんで画像素子を小型化するほうが有利である。この結果、画像素の多画素化を進めることは、高密度化を実現しなければならない。特に、次の目標とする次世代のHDTV用に適用できる固体撮像素子では、より一段と高度な高密度化技術が必要される。

固体撮像素子での高密度化技術は、VLSIを可能にしたSi半導体の微細加工技術の成果を取り入れて現在、画素ピッチは10μmを切る段階に達した。これ1Mbの半導体メモリーのセルサイズにほぼ匹敵する。今後、より細かな加工技術の開発により、形の上ではいったんの高密度化が可能と考えられる。しかしそし、画素面積を縮小するとフレーム時間が変わらないかぎり、画素に貯わることのできる信号電荷量が減少し、感度の低下につながる。そこで高感度化と両立できる高密度化技術の開発が強く望まれている。

この小特集では、この問題について、現在までの研究成果をそれぞれの分野の権威者に詳細に論じてもらうが、その前に最近の開発動向と固体撮像素子の高密度化に付随する固有の課題についてまとめてみた。

2. 固体撮像技術の最近の進歩

現在、固体撮像素子の開発は、現在のNTSC方式では40万画素でひとつの落ち書きを見せている。それらに伴い、チップ面積の縮小が要請されており、ダイナミックレンジ、スミアなどの特性の改善のために、可変電子シャッタなど機能面の充実に向けられている。

2.1 多画素化

図1は、この数年間に開発された固体撮像素子の画素数とその画素面積の推移を示したものである。1986年頃より、開発の中心が25万画素より水平解像度430TV本に対応する38～40万画素の素子に移っていことがわかる。そのうえ、デバイス構成としては、スミアの低減ならびに可変電子シャッタ機能を持つために複雑なFIT構造をとるものが多かっただけ事実である。一方、画素サイズは、LSIの新しいプロセス技術やスケーリング手法を取り入れ、半導体メモリーのセルサイズの減少とほぼ同じ歩調で縮小されてきた。特に、信号転送電極と垂直転送電極の共用など構造の簡素化、VOD (Vertical Overflow Drain)によるプルーミングの抑制などのアイディアは commuters 以上に、高密度化の達成に大きく貢献した。現在、画素面積80μm²

"Trends of High-resolution and High-performance Solid State Imaging Technology" by Takao Ando (Research Institute of Electronics, Shizuoka University, Hamamatsu)
程度のものまで試作されている。従来、25万画素は1/2インチ、33〜38万画素は大部分2/3インチと画像
サイズを大きくとっていたので、画素面積は画素数ほどに縮小していなかったが、最近は38〜40万画素
の素子も2/3インチから1/2インチへと確実に縮小される傾向にある。

撮像デバイスでは、光が入力信号であること、扱う
信号がアナログ量であることから、画素面積の縮小に
伴う制約がいくつかある。シリコンは光の吸収係数が
比較的小さく、その上キャリアの拡散距離が長い。し
たがって、基板の深い位置で吸収された光によるキャ
リアは、周辺の画素やIL-CCDでは垂直転送路に入
り、光クロストーカやスミアを発生する。このままで
は画素ピッチを小さくしても解像度を高くできない。
そこで、図2に示すように、形状を制御したpウェ
ルと完全空乏化フォトダイオードからなるnpn構造
を用いることが考えられ、現在、可視部の光を使う
素子に限れば、ほとんど問題にならない。

2.2 高感度化

画素面積が小さくなると単位時間に入射する光子数
が減少するので、高密度化と感度は互いに反比関係に
ある。したがって、高密度化の達成には高密度技術が
伴われなくてはならない。高感度化には信号成分を増
すか、雑音を減らすかの2つの方法がある。前者によ
るもののうち、開口率の改善は雑音を伴わず信号成
分を増加できるので、その効果は大きい。開口率の改
善には4つのアプローチが考えられる。

第一は、感光部を積層した積層型撮像素である。図
3に代表的な画素断面の例を示す。この構造は、感
光部と信号電荷転送部が空間的に分離できるので、
2つの領域間に面積のトレードオフは生じず、開口率
を1に近づけることができる理想的構造と考えられる。
最近、a-Si光導電膜を積層膜に使いHDTV対
応の200万画素撮像素が試作され、開口率0.7〜0.8

図1 ここ数年間の固体撮像素の推移

図2 npn型フォトダイオードの構造（単位画素断面）

図3 積層型固体撮像素の単位画素の断面構造

106 (4) テレビジョン学会誌 Vol.44, No.2 (1990)
を達成した49。しかし、現状では残像ならびに積層プロセスに関して解決すべき問題も多い。

第二は、より幅広い設計ルールを適用して感受性部の面積を広くする方法である。IL-CCD型の固体感光素子の高密度化は主としてこの方法が使われてきた。現在、1.2μmルールで200万画素の素子が試作されている50。しかし、同一平面上に感受部と信号電荷輸送部を配置するので、IL-CCDでは設計に微妙なバランスが要求されるなど、高密度化には限界がある。

第三の方法として、フレーム転送型の蓄積部をも感受部に使うフルフレーム転送型感光素子がある。2/3インチ、140万画素の感光素子が試作されている51。画素面積6.8×6.8μm²でも45%の高い開口率を得ている。ただこの構成では、スミヤを防ぐために機械式シャッタを併用する必要があるので、応用は特殊用途に例えば電子スチールカメラ等の分野に限られる。

もうひとつはプローチュは、開口率を高めやすい新しいデバイス構成の採用である。IL-CCDでは横1列のフォトダイオードの信号電荷を垂直CCDへ移し、水平プランクフック期間中に垂直CCDから水平CCDへ転送するCSD (Charge Sweep Device)や垂直CCDを多相駆動するデバイスの報告がある5253。感光デバイスの解像度特性は開口率と関係が深い。固体感光素子は感光管と異なり、開口率が1より小さいのでナイス値限界で高いMTF 値を持つ。このために、大きなモアレ偽信号が発生する。これを軽減するには開口率を大きくとること、画素数を増すこと必要である。

2.3 暗電流の低減

画素面積の縮小による飽和信号電荷量の減少は、ダイナミックレンジの低下を招くとともに、画素間のばらつきが相対的に大きく影響する。現在、素地をと呼ばれる暗電流のばらつきによる固定パターン雑音が、感光素子のダイナミックレンジを決める。この雑音を軽減する鍵は、プロセスと結晶基板の均一性を高めると共に、いかに暗電流を抑制するかにかかっている。暗電流の抑制には、Si-SiO₂界面から発生する暗電流成分を抑えるために、受光部の表面に多数キャリヤの蓄積層を設けた図4に示したような p'npn型埋込み構造のフォトダイオードが効果的である54。

また、この構造では接合面積が約2倍に広がるため、表面の電荷量を増やすこともできる。反面、信号電荷の読出しには、表面のp'層と転送ゲート電極間の位置ならびにプロセス条件との関係を精密に制御しなければならない。

高密度化技術と製作プロセス技術とは関連が深い。30〜40万画素に使用する最小加工寸法は、1 MbのDRAMとほとんど変わらないが、位置合わせ精度、ゲート間接電圧などに関してはDRAMより2桁程度高い均一性が要求される。また、高密度化に伴い不純物プロファイアルの精密制御が必要になり、結晶欠陥を抑えるプロセスの自由度が減少するため製作プロセスの再検討が行われ、その後、画質を損なう縁状の固定パターン雑音は基板中の不純物濃度を上げる、その除去には、エピウェハの使用が効果的であること55。白きずの除去にはCCDプロセスに先だって、基板内に残る酸素原子を内部に析出させてエピ層の外に固定化し、重金属などをゲッタリングさせるIG処理がよくこと

図4 埋込み構造フォトダイオード(単位画素断面)56

図5 フローティングウェハ電荷検出器の動作57

小特集 □ 高密度固体感光素子

(a) リセット動作

(b) 完全転送動作
などで明らかにされている14)。

2.4 低雑音信号検出技術

最も低雑音といわれるCCD型検像素子においては、信号検出部で発生するリセット雑音、FDA（Floating Diffusion Amp）アンプ雑音により、低照度の撮像限界が決まる。CCD型検像素子の低雑音化の大きな成果はCDS（Correlated Double Sampling）法の出現である15)。これによって、リセット雑音とFDAの1/2雑音は大幅に減少し、室温で等価雑音電子数を30/画素以下にすることが可能となった。画素面積が減少すると飽和電荷量も減少するが、浮遊容量や暗電流も減少するので、現状では60 DB以上のダイナミックレンジが確保できる。リセット雑音に関し

ては、図5に示すようにリセットに完全転送動作を使うことが提案され、高感度電荷検出と1.2電子数/画素の低いリセット雑音を実現した報告がある16,17)。

2.5 高精細撮像への対応

画素数が100万画素を超える高精細検像素子では、読取り速度は35 MHz以上になる。このような速度では、水平CCDレジスタを高い転送効率で動作させることが難しく、複数のCCDを並列で動作させ、クロック周波数を下げて使うことが行われている18)。さらに、CDS回路に代わりで高速動作でも安定に動作する反射型延時差雑音除去回路などが考案され、データレート31.7 MHzで出力部の雑音等価電子数を約8個にできることを示した19)。

現在、HDTV対応の検像素子は、画面サイズは2/3〜1インチと大きい。このように大きなチップサイズでのFCC型CCDの垂直転送速度を大きくすることが難しく、そこで、光シールド用のA1層をpoly-Siの垂直転送電極の駆動バ尔斯供給配線としても用いて電極の時定数を改善する試みがなされ、625 kHzの高速垂直転送速度を実現している20)。標準方式に適応しない検像素子では、400万画素の固体検像素子も開発されているが、読取り速度は遅く、静止画用である21)。

3. 高密度化の課題

MOSメモリーでは、4 K時代から始まったプレー

ナ構造を1 Mまで使ってきた。同時に、1 Mからセ
ルは各種の3次元構造を発展して、そして、64 Mまで
てはスケーリング則の適用により、できる見通しとい

う。

一方、固体検像素子では、開口率が一定でも画素面

積が縮小されると感光部に投入する光量が減少する。

表6は画像サイズ1/2インチ、量子効率10の光電変換

部から画像面積51x、蓄積時間33 msで得られる信号

電子数とそのゆらぎに基づく雑音電子数を、開口率な

らびに画像面積を変えて計算した結果である。この図

から、検像素子内に発生する付加雑音がないと仮定し

ても、画像面積が25 µm²では開口率が1で、信号対

雑音比(S/N)=43 dB、開口率が0.25では約36 dBで、光シャ」と雑音がモニタ上で見えないために必要

なS/N=46 dB22)以上で、この入射光線のゆらぎ

雑音は、検像素子の高密度化に対する共通的見

界となる。この問題は、チップ面積を大きくすれば解

決できるが、この場合には消費電流の増加などで回路の時

定数が大きくなり、なんらかの並列信号処理をする必要

がある。

最近、多画素化に伴う感度不足を解決する技術とし

て幅広い検像素子が注目されている23,24)。しかし、固

定パターン雑音など多くの問題があり、CCD型検像素子の性能を凌駕する段階には至っていない。こ

れら幅広い検像素子でも、光シャ」と雑音はそのまま

増幅されるので、高密度化に伴って発生する前述の

限界を改善する手段にはならない。

4. む す び

検像素子の高解像度化、高感度化が並んでデ

バイスの誕生以来、不変の技術課題であり、固体検

素素も、この数千間、半導体の微細加工技術を取り入

れ、大幅な高密度化で達成された。現在、30〜40万

画素のデバイスが実用化されている。しかし、静止画

応用やHDTVの分野では、いっそうの多画素化が要
求され、高密度化への期待は大きい。開発段階では、素子の振動ならびに低雑音化技術は、すでに信号電子を1個ずつ数えることのできる段階の直前まで到達している。したがって、今後は微細加工技術の他に、セラミックスの単純なスケーリングでは高密度化は困難になる。そこで、緩音軽減効果を持つ光変換・増幅技術や、入射光に比例した信号を読出すのではなく別の符号に変換して出力するディジタル符号化技術のデバイス化など、新たなブレーキスルーがないと多画素化、高密度化は遅延する。

（1989年9月7日受付）

【参考文献】

安藤 隆男 昭和32年、静岡大学工学部電気工学科卒業。同年、日本電気(株)中央研究所に入社。50年、静岡大学電子工学研究 所に移る。現在、同大学電子工学研究所教授。固体撮像素子など画像電子デバイスの研究に従事。工学博士。正会員。